English

Amazon's Kuiper Program Successfully Tested Satellite Space Laser

689
2023-12-18 15:26:37
See translation

SpaceX and its billionaire CEO Elon Musk may finally have reason to look back in the satellite internet competition. On Thursday, Amazon revealed that it had successfully used a space laser technology called "Optical Intersatellite Link" to transmit connections between two Kuiper Program satellites in low Earth orbit, located 621 miles apart, at a speed of 100 gigabits per second. This is approximately the distance between New York and Cincinnati. Amazon believes that the same technology can help it quickly provide fast and reliable broadband internet to some of the most remote areas on Earth.

Usually, LEO satellites send data between the antenna at the customer's location and the ground gateway connected back to the internet. OISL eliminates the need to immediately downlink data to the ground, which can improve internet speed and reduce latency, especially for end-users in remote areas. The ability for direct communication between satellites means that, in fact, OISL can provide powerful internet connectivity for cruisers in the ocean or offshore oil drilling platforms several miles from land.

"Through the optical inter satellite links of our satellite constellation, the Kuiper project will effectively operate as a mesh network in space," said Rajeev Badyal, Vice President of Kuiper Project Technology, in a statement.

A mesh network typically refers to a group of connected devices that work side by side to form a single network. In a press release, Amazon stated that it plans to equip its satellites with multiple optical terminals so that several of them can be connected to each other simultaneously. In theory, this should establish a "high-speed laser cross link" to lay the foundation for a fast mesh network in space. Amazon predicts that this space based mesh network should be able to transmit data about 30% faster than ground-based optical cables, sending data at roughly the same distance. For daily users, the actual effectiveness of this in practice remains to be observed, as Project Kuiper's services are currently not open to consumers.

Amazon launched its first two satellites into orbit in October and conducted OISL testing in November. According to reports, KuiperSat-1 and KuiperSat-2 satellites are capable of sending and receiving data at a speed of approximately 100 gigabits per second within a one hour test window. The satellite must maintain this connection while moving at a speed of 15534 miles per hour.

Ritchie Freeman, Vice President of Solutions for the Kuiper government, stated that the network's ability to provide "multiple paths through space" may be particularly attractive to customers who "want to avoid communication architectures that may be intercepted or interfered with.".

When asked if the potential customers described here are military or defense contractors, an Amazon spokesperson stated that Project Kuiper "first" focuses on providing internet coverage to residential customers in remote and underserved communities. The spokesperson continued that there may also be contact with government partners in the future.

"We are committed to collaborating with public and private sector partners who are equally committed to bridging the digital divide," the spokesperson said. We are establishing a flexible multi-purpose communication network to provide services to various clients, including space and government agencies, mobile operators, and emergency and disaster relief operations.

The Kuiper Plan was launched in 2019 with the goal of creating a constellation of 3236 satellites floating in low Earth orbit. Once completed, Amazon believes that this constellation can provide fast and affordable broadband internet to previously underserved regions around the world. But this project took its sweet time to truly launch. More than four years later, the company finally launched its first satellite into orbit in October. According to CNBC, as of this month, the company has only ordered 94 rocket launches.

SpaceX is the biggest competitor of the Kuiper Plan and already has a huge leading advantage. According to reports, the company has launched over 5000 Starlink satellites into space and currently provides satellite internet services to paying customers. Surprisingly, Amazon has recently reached an agreement with its competitors to use SpaceX rockets to quickly launch more Kuiper satellites into orbit.

New laser tests have proven that Amazon's Kuiper program is indeed more than just a wishful thinking multi billion dollar side project. However, it remains to be seen whether it can increase satellite deployment in a timely manner to catch up with SpaceX.

Source: Laser Net



Related Recommendations
  • Snapmaker introduces new 20W and 40W laser modules

    Snapmaker has opened pre-orders for 20W and 40W laser modules, which are significant upgrades to the modules available on existing Snapmaker machines.Snapmaker says that with the 40W module installed, you will be able to cut 15 mm basswood plywood at a time at a speed of 20 mm/SEC. With 20W, you will cut 10mm at a rate of 10mm/SEC. That's a lot more than Artisan and Snapmaker 2.0 - both are comp...

    2023-08-04
    See translation
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    See translation
  • The Glory of Laser and the Odyssey of "Deep Technology"

    The British engineering and construction company Metz Group has a delegation in Spain to be responsible for the expansion and renovation of the central laser facility at Rutherford Appleton Laboratory near Oxford. More commonly, the construction of the powerful laser Vulcan 20-20 has just been obtained, with a delivery date of 2029.It will emit a main excitation beam that is billions of times larg...

    2023-12-09
    See translation
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    See translation
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    See translation