English

ABB will add optical sensors to four greenhouse gas monitoring satellites

692
2023-12-06 14:03:33
See translation

ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.

These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas leaks in space. ABB has built payloads (instruments carried on the satellites) for the emission monitoring of 10 greenhouse gas satellites launched into space.

Earlier this year, GHGSat reported that due to the excellent performance of sensors, their existing satellite methane emission measurement capabilities have doubled. This enables GHGSat to accelerate the scale of its monitoring services, helping industries such as oil and gas, power generation, and mining understand and reduce greenhouse gas emissions.

Marc Corriveau, Global Operations Head of ABB Measurement and Analysis Business Line Analysis, stated: "The new contract demonstrates GHGSat's confidence in ABB's manufacturing capabilities, as ABB has the ability to build complex, high-performance optical payloads for hyperspectral Earth observations. This year, we will double our manufacturing infrastructure dedicated to space projects so that we can better serve the thriving private space sector. As we expand into other Earth observation missions, we strive to contribute to the success of our existing clients."

GHGSat CEO Stacphane Germain said, "Our collaboration began in 2018, showcasing ABB's technical expertise and manufacturing capabilities." This experience has enhanced our confidence in ABB's support for GHGSat's ability to expand in building proprietary high-resolution payloads. This partnership is key to significantly reducing greenhouse gas emissions and ultimately having specific impacts in the fight against climate change. "

For over 20 years, ABB has been a leader in the field of orbital gas sensing, starting with the development of the Canadian Space Agency's SCISAT mission payload, which describes the concentrations of over 70 different gas types from cloud tops to outer space, as low as one in a trillion.

ABB has also provided hyperspectral technology to the Japanese GOSAT program, which is the first to conduct global mapping of greenhouse gas sources and sinks in orbit at a regional scale, starting with the first satellite in 2009 and progressing to an improved version in 2018.

Today, ABB has manufactured an enhanced version of GHGSat's proprietary wide-angle Fabry Perot (WAP) interferometer, built upon this tradition, which can track the same infrared fingerprints of greenhouse gases. Through this approach, ABB applies its extensive expertise gained from early highly anticipated government space missions to private sector space, with a focus on civilian operable low latency satellite data.

Source: OFweek

Related Recommendations
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    See translation
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    See translation
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    See translation
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    See translation
  • AM Research has released its latest quarterly data and forecast report

    Recently, additive manufacturing research company AM Research released its latest quarterly data and forecast report, which deeply analyzes the latest developments in the global 3D printing market, covering multidimensional analysis of suppliers, printing technology, geographic location, and application areas.According to the report, the global 3D printing market once again demonstrates strong gro...

    2024-09-29
    See translation