English

Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

456
2024-11-20 14:05:47
See translation

Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President.

 



Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace and defense. Earlier, he served as a senior manager at Boeing, providing leadership and human resources support to over 10000 employees and leading the department to achieve over $4.5 billion in revenue. In the early stages of his career, he served as a senior expert in human resources management, providing comprehensive human resources support to three institutions and four specialized departments.

Armstrong holds a Master of Business Administration and a Master of Arts in Management Systems from Webster University. He holds a Bachelor's degree in Mechanical Engineering from Villanova University. Armstrong has over 30 years of leadership experience in B2B strategic planning, operations, and human resources.

On November 14th, LPC released its third quarter performance, with the following financial data:
Revenue: 800000 US dollars, compared to 1.3 million US dollars in the same period last year;
Gross profit: 600000 US dollars, compared to 1 million US dollars in the same period last year;
Operating loss: 1.7 million US dollars, compared to 900000 US dollars in the same period last year;
Net loss: increased from $900000 to $1.6 million;

LPC believes that the decline in the company's performance in the third quarter is mainly due to its increased investment in human resources, sales, and administrative functions, which has affected the company's performance in the short term. But in the long run, these strategic measures are crucial for LPC's future growth.

In terms of business, LPC has received multiple CleanTech customer orders this year, including Acuren, a leader in non-destructive testing services, a polycrystalline silicon manufacturer in the semiconductor and solar fields, and a global enterprise in the oil and gas fields. In addition, LPC has also received a DefenseTech order from the US Navy, and its Pearl Harbor Naval Shipyard and intermediate maintenance facility have integrated LPC's DefenseTech laser system for removing corrosion from naval vessels.

At the strategic layout level, LPC will expand its cooperation with Brokk to its Australian subsidiary this year, introducing laser cleaning and laser cutting technology into mining, tunneling, construction, metal processing, and military ecosystems in Australia, New Zealand, and the entire Asia Pacific region.

It is worth mentioning that LPC recently announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (hereinafter referred to as CMS), which will be completed shortly after the third quarter. Although LPC's market value has shrunk by 70% due to previous short selling allegations, it still resolutely chose to buy the bankrupt company at the bottom, seeing it as a key opportunity to promote LPC's transformation.

CMS focuses on customizing precision laser systems, including laser drilling for controlled release drugs and anti-counterfeiting solutions. This acquisition will enable LPC to enter the large and rapidly growing healthcare and pharmaceutical industries, especially in the fields of controlled release drug delivery and anti-counterfeiting pills. This is a high threshold and anti cyclical industry, and it will also bring synergies to LPC's industrial market. In addition, LPC plans to fully integrate the existing CMS team, including engineers and customer support specialists, to ensure a smooth transition for CMS employees and guarantee the continuity of service and support for existing customers during the transition period.

Recently, LPC also announced the construction of a 50000 square foot factory and is fully committed to promoting the research and development of new additive manufacturing technologies and systems, actively responding to the urgent needs of the semiconductor industry, and accelerating the development of laser shielding anti drone systems (LSAD).

LPC has released a concept video for the prototype of the Laser Shield Anti Drone System (LSAD). LSAD is a solution being developed to prevent unauthorized drone activity, and this technology will play a critical role in the defense market.

Source: OFweek

Related Recommendations
  • TDK introduces a new gold-wire-bonded optional NTC thermistor for laser diode temperature measurement

    TDK Corporation (TSE: 6762) announced the introduction of the new NTCWS series of NTC thermistors with gold wire bonding. These bonding NTC thermistors can be installed in packages via gold wire bonding to enable high precision temperature detection of laser diodes (LD) for optical communication. The series will begin mass production in September 2023.The use of LD devices in optical communication...

    2023-09-08
    See translation
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    See translation
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    See translation
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    See translation
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    See translation