English

Researchers develop innovative quantum dot lasers for advanced frequency combs

821
2023-11-17 14:36:44
See translation

Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for silicon photonic integrated circuits in data centers and various other applications.

The UCSB research team led by John Bowers designed the QD platform, which can manufacture devices with bandwidth comparable to the most advanced QD mode-locked lasers currently available. The AM and FM pulse widths generated by UCSB devices meet the latest standards for QD mode-locked lasers.

The significance of this development lies in the potential enhancement of optical frequency combs, which have been proven to have immeasurable value in remote sensing, spectroscopy, and optical communication. However, traditional amplitude modulation frequency combs pose challenges to dense wavelength division multiplexing systems due to their high instantaneous power, resulting in strong thermal nonlinearity. In order to effectively generate a wide and efficient optical frequency comb, precise engineering design of the group velocity dispersion of the waveguide is necessary.

UCSB researchers solved this challenge by utilizing collision pulse structures, which enable QD mode-locked lasers to have impressive fast repetition rates of 60 GHz. This helps to support DWDM systems while minimizing channel crosstalk during data transmission. In addition, the laser cavity is designed with a length of 1.35 mm and a width of 2.6 μ The laser cavity of m achieves a 3 dB optical bandwidth of up to 2.2 THz in the telecommunications O-band, with an impressive electro-optical insertion and removal efficiency of over 12%.

In order to generate FM combs, in addition to the group velocity dispersion of the waveguide, the nonlinear characteristics of the laser active region also play a crucial role. The QD mode-locked laser exhibits an astonishing -5 dB four-wave mixing efficiency, which helps generate FM combs efficiently and robustly. It is fascinating that the gain dynamics of quantum dot lasers determine the mechanism behind the formation of FM and AM combs. The formation of AM combs requires slow gain through low injection current, while FM combs rely on fast gain to generate significant Kerr nonlinearity and four-wave mixing.

In an equally eye-catching discovery, researchers have demonstrated the ability to effectively design Kerr nonlinearity in quantum dot lasers, expanding the FM comb bandwidth without the need for GVD engineering. By applying voltage to the saturable absorber portion of the laser, this method not only improves the performance of the FM comb, but also simplifies the manufacturing process. Compared with traditional quantum well diode lasers, quantum lasers have strong Kerr nonlinearity and four-wave mixing capabilities, making them more suitable for generating FM combs in the optical communication frequency band.

Compared with FM combs produced by other integrated optical frequency comb technologies, the FM combs produced by this new technology have better size, weight, power consumption, and cost characteristics, which demonstrate the strength of QD lasers. The wide range of characteristics of FM combs makes them very suitable for high-capacity optical communication systems, and their performance is superior to traditional AM combs.

Excitingly, the technology developed by UCSB researchers is also compatible with complementary metal oxide semiconductor technology, further highlighting its potential for practical implementation.

This groundbreaking study has been published in "Light: Science and Applications", a renowned scientific journal specializing in the field of optics.

Source: Laser Network

Related Recommendations
  • Aerotech launches new micro hexapod sports platform

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the HexGen HEX150-125HL miniature hexapod motion platform, a six degree of freedom (DOF) precision positioning system. This compact and cost-effective hexapod sports platform has a base diameter of 150 millimeters and a nominal height of 125 millimeters. It can achieve a minimum incremental movement of up...

    01-14
    See translation
  • Research and investigate the thermal effects of 3D stacked photons and electronic chips

    Hybrid 3D integrated optical transceiver. (A, B) Test setup: Place the photon chip (PIC) on the circuit board (green), and glue the electronic chip (EIC) onto the top of the photon chip. (C) It is the cross-section of the EIC-PIC component with micro protrusions. (D) Display the mesh of the finite element model.The latest progress in artificial intelligence, more specifically, is the pressure plac...

    2023-12-09
    See translation
  • Photonic hydrogel of high solid cellulose with reconfigurability

    Recently, Qing Guangyan, a researcher team from the Research Group on Bioseparation and Interface Molecular Mechanism (1824 Group) of Biotechnology Research Department of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, designed and prepared a highly solid cellulose photonic hydrogel with reconfigurability and mechanical discoloration. This preparation method opens up a new way t...

    02-17
    See translation
  • The Ruefeng 30w picosecond laser brings unprecedented possibilities in the art of cutting resin eye lenses

    Ruifeng Picosecond laser: Open the door to the art of cutting resin eye lensesAs an important innovation in the modern eyewear industry, resin lenses bring us visual clarity and comfort with their lightness, transparency and impact resistance.However, with the continuous improvement of people's demand for quality and personalization, how to achieve accurate and beautiful cutting on resin eye lense...

    2023-09-14
    See translation
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    See translation