English

Enhanced laser heterodyne spectroscopy contributes to the measurement of atmospheric greenhouse gases

356
2023-10-25 15:48:05
See translation

The research team led by Professor Gao Xiaoming of the Chinese Academy of Sciences Hefei Institute of Physical Sciences has improved the measurement accuracy of atmospheric greenhouse gases by using erbium-doped fiber amplifier assisted laser heterodyne radiometer.

The study was published in the Journal of Optics and was selected as an editor's selection.

LHR is renowned for its high sensitivity and spectral resolution, and has become the next generation of lightweight satellite payloads. However, during the scanning process, signals measured by heterodyne radiometers often encounter issues such as reduced baseline slope and signal-to-noise ratio, which can affect measurement accuracy.

In this study, researchers developed a near-infrared laser heterodyne spectroscopy detection scheme based on EDFA.
By adjusting the EDFA for automatic power control, researchers successfully amplified and stabilized the power of the local oscillator DFB laser, thereby significantly reducing baseline fluctuations. This optimization significantly improves the accuracy of the processed atmospheric transmission spectrum.

By using EDFA with automatic power locking function, the LHR can be operated in a state dominated by shot noise during scanning. By eliminating errors caused by baseline slope, EDFA assisted LHR significantly improves its performance.

"This optimization enables LHR to operate in a state dominated by shot noise during the scanning process, "said team member Dr. Li Jun.

In the experimental measurement of atmospheric CO, EDFA assisted LHR was used for the transmission spectrum, and the signal-to-noise ratio of the heterodyne signal was increased by three times.

"These results demonstrate the effectiveness of EDFA assisted LHR in achieving higher accuracy and precision in atmospheric gas measurement, "Dr. Li said.

The team stated that this discovery can improve ground level LHR remote sensing and enhance greenhouse gas knowledge and monitoring.

Related Recommendations
  • Aerotech launches new micro hexapod sports platform

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the HexGen HEX150-125HL miniature hexapod motion platform, a six degree of freedom (DOF) precision positioning system. This compact and cost-effective hexapod sports platform has a base diameter of 150 millimeters and a nominal height of 125 millimeters. It can achieve a minimum incremental movement of up...

    01-14
    See translation
  • Monport enhances K40 laser cutting machine through air assisted technology

    Monport Laser has launched its latest breakthrough innovative product, the Monport 40W Pro CO2 laser engraving machine, with air assistance. This cutting-edge machine has set a new standard for precision carving, providing excellent performance and a series of upgraded functions. The Monport 40W Pro surpasses its predecessor, the Monport 40W Laser, in all aspects, making it a game-changing solutio...

    2023-10-11
    See translation
  • Korean laser company AP Systems establishes new AVP equipment division

    Recently, AP Systems, a well-known laser manufacturer in South Korea, established a new AVP equipment division for the advanced packaging field. This business unit will focus on laser equipment required for advanced packaging processes of high bandwidth memory (HBM).AP Systems is a subsidiary of APS Group, mainly focused on the fields of display and semiconductor laser processing equipment. It foc...

    01-15
    See translation
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    See translation
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    See translation