English

A research team from the University of Chicago in the United States has demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs)

398
2023-09-21 15:52:59
See translation

According to reports, a research team at the University of Chicago in the United States recently demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs), which may open up new applications for mid infrared light sources.

Colloidal quantum dots are a type of semiconductor nanocrystal material that provides a promising approach for the synthesis of light sources in large quantities through wet chemical solution processing technology.

The electroluminescence of colloidal quantum dots in the visible light range has been highly efficient and cost-effective, but other wavelengths have been proven to be more challenging so far, especially in the mid infrared region.


The Philippe Guyot SiOnnest Laboratory (PGS Laboratory) at the University of Chicago specializes in the study of nanocrystalline quantum dots generated by colloidal synthesis chemistry. A colloidal quantum dot with significantly improved emission characteristics in the mid infrared band has been developed and its research results have been published in the journal Nature Photonics.

Mid infrared light source
Xingyu Shen from PGS Laboratory commented, "This cost-effective and easy-to-use method of manufacturing infrared light sources using quantum dots may be very useful. This discovery may ultimately lead to significantly cheaper mid infrared LEDs and lasers, or new technological applications.

The above work is based on the previous research on the manufacturing and performance of quantum dot devices in PGS laboratory, including efforts to improve the size distribution of nanoparticles and the development of nanocrystalline quantum dot infrared detectors, which may be comparable to commercial devices at extremely low costs.

In 2022, the research team demonstrated the first mid infrared colloidal quantum dot LED based on mercury telluride (HgTe), which has semiconductor properties and stability, facilitating infrared emission. The team pointed out at the time that this quantum dot "has the potential to break the extremely high 'cost/gram' of infrared imaging through exciting new manufacturing processes.

In the new project, the team further studied the manufacturing technology and luminescence methods of colloidal quantum dots, inspired by the established laser emission cascade method, where electrons pass through a series of different energy levels and emit a portion of energy in the form of light at each level.

According to the PGS laboratory, so far this cascade technology has never been achieved using colloidal quantum dots. The laboratory has created a black "ink" of HgTe nanocrystals, which are "coated" on a substrate and illuminated by an electric current.

According to a paper published by the team in the journal Nature Photonics, the colloidal quantum dot emits a quantum efficiency of 4.5% μ The mid infrared light of m is close to commercial epitaxial cascaded quantum well light-emitting diodes. Through further optimization, this cascading method may surpass existing methods.

We are very excited about this possibility, "Guyot SiOnnest said." This is one of the best examples of potential applications of colloidal quantum dots. More applications can be achieved through other materials, but this system architecture really works because of quantum mechanics. I think it is driving the field forward in a very interesting way.

Source: Sohu

Related Recommendations
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    See translation
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    See translation
  • 330 million US dollars! This laser ophthalmic treatment developer has been acquired

    Recently, according to a report submitted by BioLight to the Tel Aviv Stock Exchange, Swiss American pharmaceutical and medical device giant Alcon Pharmaceuticals is acquiring Israeli medical technology company Belkin Vision.It is reported that BioLight will sell its 4% stake in Belkin Vision, which may be worth up to $330 million based on the milestones established in the transaction.Belkin Visio...

    2024-05-06
    See translation
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    See translation
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    See translation