English

The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

412
2023-09-14 15:25:07
See translation

Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.

Among the outstanding innovations showcased at the CEM 2023 booth, nanoplus Nanosystems will showcase its use for detecting sulfur dioxide, nitrogen oxides, ethane, methane, acetylene, ammonium, hydrogen sulfide, hydrogen chloride, carbon dioxide, carbon monoxide, and oxygen for emission control, climate monitoring, combustion control, industrial safety, and gas pipeline leaks.

Tunable Diode Laser (TDL) spectroscopy can measure these gases as low as ppb levels in real-time and in situ. Nanoplus lasers have long-term stability and almost no maintenance, making them ideal for operating in harsh environments. CEM 2023 will provide visitors with an excellent opportunity to learn about this cutting-edge, validated, and highly modern approach to industrial emission monitoring.

Source: Laser Network

Related Recommendations
  • Yang Xueming from Shenzhen has been elected as a Foreign Fellow of the Royal Society of England

    On May 20th, the Royal Society announced on its official website that over 90 scientists who have made outstanding contributions to scientific research have been newly elected as Fellow of The Royal Society (FRS). Yang Xueming, an academician of the CAS Member and chief director of the Shenzhen Free Electron Laser Device, was newly elected as a foreign academician of the Royal Society of England.A...

    05-26
    See translation
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    See translation
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    See translation
  • The research results on the implementation of micro active vortex laser using laser nanoprinting technology are published in Nano Letters

    IntroductionVortex beams carrying orbital angular momentum (OAM) are widely used for high-throughput optical information multiplexing, and achieving on chip, small-scale vortex lasers is crucial for promoting the industrial implementation of vortex light reuse technology. Recently, Gu Min, an academician of Shanghai University of Technology, and Fang Xinyuan, an associate professor of Shanghai Uni...

    2023-10-16
    See translation
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    See translation