English

China University of Science and Technology has made significant progress in the field of pure red perovskite light-emitting diodes

1237
2025-05-12 14:37:53
See translation

Recently, four research groups from the University of Science and Technology of China, namely Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei, have collaborated to make significant progress in the field of pure red perovskite light-emitting diodes (LEDs). The team independently invented the Electrical Excitation Transient Spectroscopy (EETA) technology and used it to reveal that hole leakage is the key factor causing the efficiency roll off of pure red three-dimensional perovskite LEDs. They also developed a new type of three-dimensional perovskite heterojunction luminescent layer to reduce hole leakage (Figure 1), successfully preparing high-performance pure red perovskite LEDs. The relevant research results have been published in the journal Nature, marking significant progress in pure red perovskite LED technology.


Figure 1. Three dimensional perovskite heterojunction limits hole leakage suppression in LED


Currently, high-performance pure red perovskite LEDs (with external quantum efficiency exceeding 20%) that have been reported mainly use quasi two-dimensional and small-sized quantum dot perovskites. However, due to their low carrier mobility, it is difficult to improve brightness. Three dimensional mixed halide perovskites (such as CsPbI3 xBrx) have high carrier mobility, but currently, the efficiency of CsPbI3 xBrx three-dimensional perovskite LEDs decreases significantly with increasing brightness. Due to the lack of in situ characterization equipment for LEDs, the underlying mechanism is unclear.

In response to this issue, team members used their independently invented EETA technology to "film" CsPbI3 xBrx based LEDs and found that hole leakage into the electron transport layer is the performance bottleneck of three-dimensional CsPbI3 xBrx based LEDs. The EETA results indicate that better confinement of holes and suppression of their leakage are key to achieving high-performance CsPbI3 xBrx based pure red LEDs. In order to enhance the carrier confinement capability of perovskite, the team proposed a novel three-dimensional perovskite heterojunction design, which contains narrow bandgap emitters and wide bandgap energy barriers for confined carriers within the heterojunction material. The wide bandgap material is achieved by inserting organic molecules with strong interaction and low steric hindrance with the lead halide framework into a portion of the CsPbI3 xBrx lattice, thereby inducing partial lattice expansion (Figure 2a, b). 

Through systematic theoretical calculations and molecular design, we have successfully developed organic molecules that form stable bonds with lead halide frameworks through multifunctional functional groups such as carboxyl, amino, and sulfonyl groups, and achieved precise introduction of wide bandgap phases (Figure 2c). Through this method, the team obtained perovskite materials with heterostructures and continuous three-dimensional skeletons, which can achieve carrier confinement while maintaining high mobility. The obtained three-dimensional perovskite heterostructure was fully validated by high-resolution transmission electron microscopy (Figure 2d-i).


Figure 2. Design and Material Characterization of Three Dimensional CsPbI3 xBrx Perovskite Heterojunction


By constructing a three-dimensional CsPbI3 xBrx heterojunction luminescent layer, the hole leakage of pure red perovskite LED devices was effectively suppressed (Figure 3a, b). The peak external quantum efficiency (EQE) of the corresponding device reaches 24.2%, and the maximum brightness is 24600 cd m-2 (Figure 3c, d). And the device exhibits very low efficiency roll off - even at a brightness of 22670 cd m-2, the device still has an EQE of over 10%, which is better than previously reported results (Figure 3e). The research results of this work demonstrate the enormous potential of three-dimensional perovskite heterojunction material design in developing efficient, bright, and stable perovskite LEDs.


Figure 3. Performance of Three Dimensional Heterojunction CsPbI3 xBrx Based Pure Red LED


Song Yonghui (PhD), Li Bo (postdoctoral fellow), Wang Zijian (PhD student), and Tai Xiaolin (PhD student) from the University of Science and Technology of China are co first authors of this paper. Professors Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei from the University of Science and Technology of China are co corresponding authors of this paper. The development of EETA technology has received strong support from Academician Du Jiangfeng. This work has received support from the National Natural Science Foundation of China, the Ministry of Science and Technology, and other funding sources. The Physical and Chemical Science Experimental Center provided support for the development of this project with characterization equipment such as SEM, PL, UV vis, and aberration corrected electron microscopy.

Source: Opticsky

Related Recommendations
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    See translation
  • UCI Cinemas collaborates with The Marvels to launch its new 4K laser projector

    Cinemas are in a developmental stage. Their roles are changing and the rules are being rewritten. Many people have proposed a way to make cinemas a truly unique place by providing audiences with a higher quality experience. It is along this route that UCI Cinemas continues to move forward. In recent days, it has officially launched a 4K laser projector and had a special date with the new MCU movie...

    2023-11-14
    See translation
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    See translation
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    See translation
  • The green and blue laser diode series provides higher beam quality

    Rutronik has expanded its optoelectronic product portfolio by introducing green and blue laser diodes packaged in metal cans TO38 and TO56 using AM OSRAM. They leave a deep impression with improved beam quality and stricter electro-optic tolerances. The power level of the laser diode ranges from 10mW to 100mW. Diodes such as PLT3 520FB and PLT5 450GB are now available on the market.The flexibility...

    2024-01-31
    See translation