English

Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

23
2025-04-30 15:20:49
See translation

Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chinese Academy of Sciences. The first author of the paper is Shi Wenjuan, a 2020 doctoral student. The first completion unit and communication unit of the paper are Xi'an Institute of Optics and Mechanics.

Nonlinear optical technology is an important technology in cutting-edge fields such as all-optical signal processing, biomedical imaging, and quantum information. However, it is limited by the weak nonlinear optical effects of traditional materials, dependence on strong laser sources, and long interaction distances, making it difficult to meet the development needs of integrated and low-power nanophotonic devices. Epsilon near zero (ENZ) materials have ultrafast and ultra strong nonlinear optical effects, which are expected to solve this problem. Micro nano structures based on quasi continuous bound states in the continuum (Q-BIC) significantly enhance the interaction between light and matter through high-quality factor resonance, opening up new avenues for regulating nonlinear optical effects. However, the narrow bandwidth characteristics and extreme sensitivity to structural parameters of the Q-BIC system severely restrict its practical applications. How to break through the constraint relationship between high quality factor and working bandwidth at the micro nano scale, and achieve the design and preparation of high-performance photonic devices, has become a key scientific problem that urgently needs to be solved in the field of photonic integration.

In response to the above issues, the research team has proposed for the first time a non local metasurface structure design with strong coupling between quasi guided mode (Q-GM) and ENZ mode. By introducing periodic perturbations to achieve the folding of the first Brillouin zone, an angle adjustable high-quality factor Q-GM has been successfully constructed, breaking through the wave vector and wavelength limitations of traditional Q-BIC.


Figure 1. (a) Three dimensional structure (b) Linear transmission spectrum measured and simulated


Figure 2. (a) Band folding of ENZ free thin film (b) Relationship between resonance transmission peak and structural parameters


Figure 3. Measurement and simulation of (a) nonlinear refractive index coefficient and (b) nonlinear absorption coefficient under normal incidence

 


Figure 4. Linear optical properties of oblique incidence (a) Experimental and simulated linear transmission spectra at different incidence angles; (b) The relationship between electric field distribution, resonance transmission peak, and incident angle

This coupling mechanism has three breakthrough advantages: the strong field overlap effect between Q-GM and ENZ modes generates a 260 meV energy level anti crossover splitting, significantly enhancing nonlinear optical effects; Under normal incidence conditions, the nonlinear refractive index of the metasurface reaches In2I=3.8 × 10-13m2/W, which is three orders of magnitude higher than the nonlinear coefficient of the ENZ film and effectively reduces the power consumption of on-chip nonlinear photonic devices; Thanks to the high-quality factor of Q-GM in the wide wave vector, the experimental measurement of the nonlinear coefficient of the metasurface has robustness with increasing incident angle, achieving broadband tunable strong nonlinear optical effects.

The research results provide a new technological route for the development of nonlinear photonic devices with large angle and multi wavelength modulation, and demonstrate important application potential in fields such as integrated photonics, all-optical signal processing, and biosensing imaging.

Source: Opticsky

Related Recommendations
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    See translation
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    See translation
  • Dr. Torsten Derr will be appointed as the CEO of SCHOTT Group on January 1, 2025

    November 25, 2024, Mainz, GermanyStarting from January 1, 2025, Dr. Torsten Derr will take over as the CEO of SCHOTT Group.The new CEO of SCHOTT Group previously served as the CEO of SGL Carbon SE.Starting from January 1, 2025, Dr. Torsten Derr will officially assume the position of CEO of SCHOTT Group. SCHOTT Group announced in October 2024 that Dr. Torsten Derr will succeed Dr. Frank Heinrich, w...

    2024-11-27
    See translation
  • Marilli won the "2024 CES Innovation Award": Laser and optical taillights produce 1mm of light

    Marelli is a company specialized in the field of automotive lighting, which has won the prestigious "2024 CES Innovation Award Winner" for its revolutionary red laser and fiber optic taillight technology. This innovative solution, showcased at the 2024 Consumer Electronics Show, for the first time combines the functionality of red laser with taillights, opening up a new perspective for car design....

    2024-01-16
    See translation
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    See translation