English

Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

481
2024-01-25 10:45:47
See translation

TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.

Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherlands and Europe in advancing technological sovereignty within a strong NATO, as it will achieve faster and safer broadband connectivity. This is a temporary result of the emerging Dutch industry's collaborative efforts dedicated to optical satellite communication.".

Almost all connections in daily life, such as Wi Fi, Bluetooth, or 5G, are based on radio frequency waves. Due to the increase in data consumption, this radio spectrum is slowly filling up, causing scarcity and interference. Laser satellite communication provides a solution as it can send data faster and safer through invisible laser signals. The radio frequency can reach speeds of several hundred megabits, and in some cases can reach several thousand megabits per second.

The speed of laser communication has increased by 100 to 1000 times. Even at lower speeds, laser communication links are interesting because the system is smaller, lighter, and more energy-efficient, which is crucial for space applications. It is also safer because it uses a very narrow optical laser beam instead of a wide radio signal. This makes eavesdropping more difficult and interference can be quickly detected.

The laser communication system SmallCAT was launched by SpaceX on a satellite operated by the Norwegian Space Agency in April 2023. Since then, TNO has been preparing to establish a connection between satellites flying in low Earth orbit and optical ground stations in The Hague and Tenerife Island. In such an experiment, the ground station first sends a signal to the satellite, and the laser communication system on the satellite must find the signal through its overpass. Then, it sends the laser back to the Earth that the ground station needs to capture. This is very challenging as the satellite flies at a speed of 28000 kilometers per hour at an altitude of 500 kilometers.

In several experiments, TNO successfully found two ground stations from space and sent back and recaptured the laser beam with extremely high accuracy. Once the link is established, data is transmitted from satellite instruments and received by the optical ground station in The Hague at a maximum data rate of 1 gigabit per second. The ground station of TNO in The Hague was jointly developed by TNO and Airbus Netherlands. This is the first time such a compact satellite instrument made in the Netherlands has achieved this. It indicates that the terminals on the satellite and the ground station are working, and they can also be found under real conditions.

Source: Laser Net

Related Recommendations
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    See translation
  • Researchers have developed the world's smallest silicon chip quantum photodetector

    Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microch...

    2024-05-21
    See translation
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    See translation
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    See translation
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    See translation