한국어

EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

935
2024-04-15 16:56:09
번역 보기

The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerospace, electronics, and quantum computing.

The center is partially funded by the Regional Innovation Fund (RIF) in the UK and will be located at the Elite Manufacturing Skills Center (ECMS) at the University of Wolverhampton Springfield campus. It will serve as a center for knowledge exchange and research commercialization activities, providing services to local, regional, and global clients in various fields.

Desire for innovation in additive manufacturing
The additive manufacturing research group and its spin off company Additive Analytics at the University of Wolverhampton will lead materials and process development activities. Industries from automobiles and electronics to quantum computing and aerospace have expressed interest and emphasized the widespread applicability of copper additive manufacturing in thermal management and electrification due to its excellent thermal and electrical performance.

Although copper has ideal properties, laser processing it poses challenges and hinders its widespread adoption in additive manufacturing. The alliance's work aims to address this issue by utilizing cutting-edge technology, processes, and expertise to improve efficiency and reduce material waste.

Decades of expertise in additive manufacturing
Building on a 20-year partnership between the University of Wolverhampton and EOS, the new Center of Excellence will be supported by the adoption of AMCM 290 FLX, the next-generation laser powder bed fusion system capable of handling challenging materials such as copper. The AMCM 290 FLX is a customized EOS M 290 machine equipped with the most advanced nLIGHT beam shaping laser technology, high-temperature processing capabilities, and excellent oxygen control. This system enables enterprises to obtain the latest technologies and research results as early as possible and easily.

Professor Arun Arjunan, Director of ECMS and Engineering Innovation and Research at the University of Wolverhampton, said, "The establishment of the UK Centre for Excellence in Copper Additive Manufacturing marks an important milestone in the field of additive manufacturing, laying the foundation for innovation, sustainable development, and responsible manufacturing in the new era. Future projects will explore the integration of laser processing data, machine learning, and artificial intelligence technology to achieve efficient material and laser processing development."

EOS UK Sales Manager Nathan Rawlings added, "The UK manufacturing industry has always driven and embraced innovation. Additive manufacturing using materials such as copper brings huge benefits to product designers, but may require high demands from manufacturers. This new center of excellence will create and test processes that can reliably and consistently achieve material benefits in the manufacturing of components in the real world."

Source: Laser Net

관련 추천
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    2024-01-10
    번역 보기
  • The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

    Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advance...

    2023-09-11
    번역 보기
  • STMicroelectronics and Metalenz collaborate to promote the popularization of metasurface optical devices

    STMicroelectronics (ST), a developer of semiconductor technologies and Metalenz, which creates metasurface optics, have announced a new license agreement.The companies intend to broaden ST’s capability to use Metalenz IP to produce advanced metasurface optics based on ST’s manufacturing platform combining 300mm semiconductor and optics production, test and qualification. (Any) fiancial details of ...

    07-18
    번역 보기
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    번역 보기
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    번역 보기