한국어

The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

389
2023-09-11 14:40:05
번역 보기

Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advanced Manufacturing.

The problem of UV laser induced damage of fused quartz elements seriously restricts the development of high power laser systems. Due to the inevitable processing defects in the current contact polishing process, and it is difficult to be completely removed by post-processing, the service performance and life of fused quartz components are greatly reduced.

The research team proposed a laser chromatography ablation method to characterize subsurface defects based on microsecond pulsed laser low stress uniform ablation technology, and coupled it to the rapid material removal process to achieve complete removal of subsurface defects in the grinding stage. After that, the CO2 laser laser full link flexible machining of fused quartz components is realized by using laser conformal cleaning method to clean the redeposited contaminants on the ablative surface, and using laser melting polishing to smooth the ablative trajectory.

Compared with the traditional process, the CO2 laser processing link can effectively inhibit the introduction of machining defects and realize the preparation of fused quartz components with higher damage threshold. The laser-based defect characterization and removal method proposed in this study provides a new tool for the study of subsurface defects and the formulation of suppression strategies, and also provides a new idea for the low-defect machining of fused quartz components.

This work was supported by the National Key Research and Development Program, Shanghai Sailing Program, National Natural Science Youth Foundation, Shanghai Natural Science Foundation, Astronomy Joint Foundation and Youth Innovation Promotion Association of Chinese Academy of Sciences.

Figure 1 (a) Traditional process link; (b)CO2 laser processing link; (c) Three-dimensional full aperture subsurface defect characterization method

FIG. 2 Comparison of damage properties between conventional and laser-based samples: (a)1-on-1 damage probability (355nm, 8.3ns); (b) Typical damage morphology

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

관련 추천
  • More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

    The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of th...

    2024-05-21
    번역 보기
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    번역 보기
  • LM GROUP USA expands its North American office

    Recently, BLM GROUP USA, a leading manufacturer of laser tube and sheet metal processing equipment, announced that its North American headquarters in Novi, Michigan has officially started construction, with plans to add 65000 square feet of modern facilities. It is expected to be completed and put into use in the third quarter of 2025.The specific investment amount for this expansion has not been ...

    2024-08-03
    번역 보기
  • Han's Laser senior management resigns

    Just now, Han's Laser Technology Industry Group Co., Ltd. announced the resignation of senior management personnel. The board of directors recently received a written resignation report from Mr. Zhao Guanghui, the deputy director of the company's management and decision-making committee. Mr. Zhao Guanghui has applied to resign from his position as deputy director of the company's management and de...

    06-09
    번역 보기
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    번역 보기