한국어

Tsinghua University makes progress in the field of pre sensing optical computing

507
2024-08-05 14:03:15
번역 보기

In the era of the Internet of Things, visual image sensors, as key devices in the intelligent society, are embedded in various devices such as mobile communication terminals, smart wearable devices, automobiles, and industrial machines. With the continuous expansion of applications, higher requirements have been put forward for the system power consumption, response speed, safety performance, and other aspects of sensors. In the traditional "sensory transmission computing" link, the access speed of memory and communication bandwidth have gradually become the main bottlenecks limiting system power consumption and speed. Moving the computing unit closer to the sensing unit has gradually become a powerful way to solve this problem, as it enables the near sensing end of the system to have certain data processing capabilities. Compared to other proximity computing methods, pre sensing light computing has the advantages of high speed, high bandwidth, and low power consumption. However, currently the vast majority of optical neural networks require coherent lasers as light sources, with bulky and complex hardware systems that can only perform linear operations and lack interlayer nonlinear activation, which limits the application of pre sensing light computing in edge scenes.

Figure 1. Paradigm of Near Sensor Computing in Machine Vision Link

Professor Chen Hongwei's team from the Department of Electronic Engineering at Tsinghua University proposed a compact passive multilayer optical neural network (MONN) architecture, which consists of a passive mask and a quantum dot thin film, to complete multilayer optical calculations with interlayer nonlinear activation under incoherent light illumination. The optical length of this architecture is as short as 5 millimeters, which is 2 orders of magnitude smaller than existing lens based optical neural networks. Experimental results have shown that this multi-layer computing architecture outperforms linear single-layer computing in various visual tasks, and can transfer up to 95% of computations from the electrical domain to the optical domain. This architecture has the advantages of small size, low power consumption, and high practicality, and is expected to be deployed in mobile visual scenarios such as autonomous driving, intelligent manufacturing, and virtual reality in the future.

Figure 2. Multi layer pre sensing optical neural network architecture and interlayer nonlinear activation function measurement

Meanwhile, the absorption and emission spectra of CdSe quantum dots overlap within the wavelength range. By designing, the absorption and excitation spectra of the front and rear quantum dots can be aligned, enabling cascading and expansion of existing three-layer architectures to more layers. The MONN architecture can also be combined with other proximity computing paradigms to complete complex computing functions.

Recently, the related research results were published in Science Advances under the title "Pre sensor Computing with Compact Multi layer Optical Neural Network". The Department of Electronic Engineering at Tsinghua University is the first unit of the paper, Chen Hongwei is the corresponding author of the paper, and Huang Zheng, a doctoral student from the Department of Electronics in 2020, is the first author of the paper. The research has received support from the National Natural Science Foundation of China and the Beijing Municipal Science and Technology Commission.

Source: Opticsky

관련 추천
  • Overview of Inconel 939 Alloy Parts Developed by Additive Manufacturing Process

    The related paper was published in Heliyon under the title "A systematic review of Inconel 939 alloy parts development via additive manufacturing process".IN939 is a modern nickel based high-temperature alloy that can work continuously at high temperatures due to its excellent fatigue resistance, creep resistance, and corrosion resistance. The unique performance of IN939 is related to the composit...

    2024-12-10
    번역 보기
  • The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

    Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for im...

    2023-11-03
    번역 보기
  • The research results on the implementation of micro active vortex laser using laser nanoprinting technology are published in Nano Letters

    IntroductionVortex beams carrying orbital angular momentum (OAM) are widely used for high-throughput optical information multiplexing, and achieving on chip, small-scale vortex lasers is crucial for promoting the industrial implementation of vortex light reuse technology. Recently, Gu Min, an academician of Shanghai University of Technology, and Fang Xinyuan, an associate professor of Shanghai Uni...

    2023-10-16
    번역 보기
  • Three core processes of laser soldering support the development of PCB electronics industry

    In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its ma...

    2024-04-15
    번역 보기
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    번역 보기