한국어

Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

896
2023-12-07 14:21:14
번역 보기

Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.

The common laser based techniques used for engraving/flipping information bits often encounter the so-called diffraction limit, which is the minimum area that the laser beam can focus on. In fact, this is also part of the reason why blue light technology does use blue laser technology: the wavelength of blue light is shorter than that of red light, so more information can be written in the same space. Due to the thinner blue lines, you can print four of them in the same space as the two red lines, automatically increasing the storage density per unit area.

However, what scientists have shown goes far beyond that. They demonstrated how to print in multiple colors within the same nitrogen defect, which means you can build as many bits from atoms as colors you can program separately.

"This means that we can store different information in different atoms of the same microscopic spot by using lasers with slightly different colors, thereby storing many different images in the same position on the diamond," said Tom Delord, a postdoctoral researcher at CCNY and co-author of the study. If this method can be applied to other materials or at room temperature, it may find its own way in computing applications that require high-capacity storage.

Perhaps the best way is to imagine a glass filled with water, where each color channel of the laser will drop a small piece of red, blue, or green ink into the available space. Different colors mean they have different densities, and the contents of green droplets can be separated from those of red droplets. Each color you have increases the amount of information encoded in the system - as long as you can separate different frequencies/densities when you want to read/extract content. Impressively, all these information layers can occupy the same physical space, thereby increasing storage density without interfering with each other.

"What we are doing is using narrowband lasers and low-temperature conditions to precisely control the charge of these color centers," Delord added. This new method enables us to write and read small amounts of data at a finer level than before, accurate to individual atoms.

The researchers demonstrated how their technology can print 12 different images within the same nitrogen defect, achieving a data density of 25GB per square inch. This is approximately equivalent to the 25GB of information that the entire Blu ray disc can hold in a single layer with a diameter of 12 centimeters.

In addition, this technology is non-destructive: information is not carved, but encoded into precisely charged atoms - within precisely defined nitrogen defects within the atoms. This is like lighting up small bubbles in a diamond. Then, information can be extracted from these illuminated bubbles, read, extracted, and re encoded over and over again. Diamonds seem to be eternal.

"By adjusting the beam to a slightly offset wavelength, it can remain in the same physical position but interact with different color centers to selectively change their charge - i.e. write data at sub diffraction resolution," said Monge, a postdoctoral researcher and Dr. CCNY involved in this study.

In theory, the use of diamond storage technology can guide us on a path where diamonds truly become people's best friends: personal treasures passed down from generation to generation, secret information encoded in tiny beams of light. A portable information storage medium used for providing and/or trading information during marriage.

For this technology, this is still a long way off, but the team believes they can eliminate the required low-temperature cooling when operating these color centers. They believe that their technology can one day be implemented at room temperature and can one day increase storage capacity at lower energy costs.

Source: Laser Net

관련 추천
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    번역 보기
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    번역 보기
  • Germany Developed Short Wave Green Laser Underwater Cutting Technology

    With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plant...

    2023-09-18
    번역 보기
  • Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

    High power laser diodes will be key components of future fusion power plants.Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.The project will last for three years and rece...

    2024-11-09
    번역 보기
  • The femtosecond laser was used to manufacture a magnetically responsive "Janus Origami" robot, which realized the effective integration of various droplet manipulation functions

    Recently, the reporter learned from the University of Science and Technology of China that Professor Hu Yanlei's team and his collaborators in the micro-nano Engineering Laboratory of the School of Engineering Science and Technology of the School have prepared a magnetic-responsive double-God origami robot that can be used for cross-scale droplet manipulation using femtosecond laser micro-nano man...

    2023-09-12
    번역 보기