한국어

Germany Developed Short Wave Green Laser Underwater Cutting Technology

397
2023-09-18 15:22:48
번역 보기

With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plants, it is necessary to first dismantle the old steel frame structure that is currently below sea level and rebuild more advanced equipment.

Researchers at the Fraunhofer Institute of Materials and Beam Technology (IWS) have developed a shortwave green laser cutting method for seabed cutting, which has multiple advantages compared to commonly used technologies such as saws, automatic wire saws, and plasma cutting machines.

Researchers have stated that a short wave green laser with a power exceeding kilowatt level is a necessary condition for this technology to achieve cutting. In the future, shorter wavelength blue lasers can also be used to achieve this.

Short wave green laser cuts steel under seabed conditions. Source: Fraunhofer IWS

Since its inception, laser cutting technology has made significant progress and has been widely used in the manufacturing industry. However, infrared or other longwave lasers are usually used for cutting in dry environments, assisting in coaxial gas and beam cutting to remove molten metal generated during the cutting process. However, in the marine environment, the degree of absorption, reflection, and scattering of light of different wavelengths by seawater varies, and most lasers are dissipated after a short distance. Auxiliary gases also require complex pipeline systems.

Using green lasers with shorter wavelengths than most industrial lasers to penetrate seawater does not result in significant loss, reducing power loss. Therefore, this type of laser is also more suitable for marine environments. While existing green lasers operate in water, water can discharge the resulting melt from the incision under pressure. This abundant medium in the ocean can replace the cutting gas required in dry environments, thereby eliminating the need for natural gas pipelines.

In addition, gases and gas mixtures (such as air) used in laser cutting applications in dry environments need to be pre compressed, but water does not need to be compressed. Therefore, using seawater as the cutting medium, this technology can conveniently remove melt residues at the interface.

Patrick Herwig, project leader of the Fraunhofer IWS laser cutting team, stated that this method can also be applied to small underwater robots with laser accessories. Because underwater robots can operate underwater in complex environments with high risk, pollution, and even zero visibility, achieving more efficient cutting operations than existing automatic sawing and cutting machines.

On the other hand, laser underwater cutting technology is also more environmentally friendly. The dismantling team does not need to load new blades or other consumables onto the cutting laser, and this system does not generate waste or release hazardous substances into the atmosphere. This performance advantage is particularly important when dismantling old nuclear power plants. If gas is used as the cutting medium, radioactive waste is likely to be expelled from the water surface with bubbles.

At present, the technology is still in the laboratory testing stage. Next, researchers hope to develop the validation scale of the laboratory into a practical application system.

This article is compiled by Optoelectronics based on the content of photonics

관련 추천
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    번역 보기
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    번역 보기
  • Laser ablation helps to trace the origin of medieval metals

    Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores ...

    2024-04-13
    번역 보기
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    번역 보기
  • Yongxin Optics: Launch of the "Multimodal Nanoresolution Microscope" Project

    Recently, the launch and implementation plan demonstration meeting of the "Multimodal Nano Resolution Microscope" project led by Ningbo Yongxin Optics Co., Ltd. was successfully held in Ningbo. This is the fourth time Yongxin Optics has led a national key research and development plan project and received support, indicating that the company's ability to undertake national level technological rese...

    04-10
    번역 보기