한국어

Laserline completes 70% equity acquisition of WBC Photonics

441
2024-09-20 17:29:21
번역 보기

Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline.

 



Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better than 4 mm mrad), but also establishes its position as a comprehensive service provider in the diode laser market in the blue wavelength field, covering a comprehensive product line from high-precision focusing systems to multi kilowatt high-power applications.

WBC Photonics, This enterprise, created by the management through the acquisition of TeraBiode, a subsidiary of former pine, focuses on producing high-performance diode lasers in the near-infrared (NIR) and blue wavelength ranges. The high beam quality of its laser system benefits from advanced emitter fundamental wavelength beam synthesis technology. This acquisition has opened the door for Laserline to new target markets, particularly in application areas such as additive manufacturing, welding, and cutting that heavily rely on high focusing performance.

Dr. Laserline, General Manager Christoph Ullmann commented, "The acquisition of WBC Photonics is a crucial step towards our goal of becoming a global leader in the blue light diode laser industry. It not only enhances our strength in blue light industrial semiconductor laser solutions, providing a comprehensive selection from top beam quality to global top high-power levels, but also further consolidates our market position in this field.

Michael Deutsch, CEO of WBC Photonics, also expressed a positive outlook: "Working together with Laserline, we can cross borders and jointly enter the global high brightness blue light laser market, promote innovation and development of blue semiconductor laser technology, and strive to become a global leader in this field.

Blue light semiconductor lasers, as a core technology in the electronics manufacturing industry, are becoming increasingly important, especially in the processing of non-ferrous metals such as copper and its alloys, showing great potential.

Due to the absorption efficiency of 445 nm blue light waves for copper and copper alloys being five times higher than infrared light, the energy required for thermal conductivity welding is significantly reduced, making precise welding of highly conductive non-ferrous metals such as copper and gold possible.

Since the first batch of blue semiconductor lasers were introduced, even the thinnest copper components can achieve reliable connections without relying on additional material reinforcement, opening a new chapter in material processing technology.

Source: OFweek

관련 추천
  • Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

    According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.It is not that the laser has been achieved, as the research project aims to cha...

    2024-01-04
    번역 보기
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    번역 보기
  • The research results on the implementation of micro active vortex laser using laser nanoprinting technology are published in Nano Letters

    IntroductionVortex beams carrying orbital angular momentum (OAM) are widely used for high-throughput optical information multiplexing, and achieving on chip, small-scale vortex lasers is crucial for promoting the industrial implementation of vortex light reuse technology. Recently, Gu Min, an academician of Shanghai University of Technology, and Fang Xinyuan, an associate professor of Shanghai Uni...

    2023-10-16
    번역 보기
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    번역 보기
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    번역 보기