Italiano

Japan and Germany jointly develop ultra high speed laser material deposition technology

701
2024-10-25 11:12:09
Vedi traduzione

Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes of high-strength materials, shorten production time, and potentially extend the life of key components of high-value equipment, including large aircraft.

 


In order to integrate ultra high speed laser material deposition technology into a five axis CNC platform, the Fraunhofer Laser Technology Research Institute and Makino Company have achieved fast dynamic movement of the machining head based on kinematic research, allowing flexible processing of various geometric shapes and coating of components with various materials.

The task of Makino Company in this project is not limited to the hardware of CNC machine tools, but also includes a complete redesign of process control methods. The difficulty lies in technically adapting the machine tools to high acceleration, optimizing process control and machine kinematics, and accurately controlling the interaction between laser beams and materials. The machine tool developed by Makino Singapore subsidiary achieves an effective feed rate of up to 30 meters per minute, which is significantly improved compared to traditional systems. This speed is particularly advantageous when processing large and complex components, as it can significantly shorten processing time.

With decades of experience in laser metal deposition (LMD) processes and component development, the Fraunhofer Institute of Laser Technology has optimized the process parameters for processing various materials, including adjusting laser parameters, fine-tuning powder feeding, and optimizing the motion control of CNC machine tools. The feeding rate and powder gas injection are used to control the heat introduced into the materials. By adjusting the feed rate and powder mass flow rate, precise control of heat input can be achieved, reducing the heat affected zone and ensuring uniform coating quality. In addition, by using high feed rates and optimized powder feed, the deposition efficiency of material applications can be significantly improved with the same or even higher precision, thereby enhancing the overall efficiency of the production process.

In addition to additive manufacturing applications, this new system also has the potential to be applied in the field of maintenance. For many expensive components with minor defects that must be replaced, Makino's flexible system with rotating and tilting workbenches can provide maintenance services, saving the cost of new products, avoiding transportation and delivery time, and minimizing downtime. A key aspect of future development is to identify and validate new application areas for Near Net Shape Additive Manufacturing (EHLA3D) processes, particularly in the application of multi material systems and the production of fine structures.

Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • Trends and Reflections on the Laser Industry in 2025

    In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.In 2025, practitioners in the laser and manufacturing industries still face ma...

    01-02
    Vedi traduzione
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    Vedi traduzione
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    Vedi traduzione
  • Jenoptik Jenoptik Group's new factory officially completed in Germany

    After two and a half years of construction, Jenoptik Jenoptik Group's new factory in Dresden, Germany has been officially completed, marking the company's largest single investment in recent times. Jenoptik stated that by expanding its production and research and development capabilities in micro optical devices, it will provide high-precision sensor production technology for high-performance chip...

    05-16
    Vedi traduzione
  • The efficiency of crystalline silicon solar cells has exceeded 27% for the first time, and Longi's research results have been published in Nature

    Recently, Longi Green Energy Technology Co., Ltd. (hereinafter referred to as "Longi"), as the first unit, published a research paper titled "Silicon heterojunction back contact solar cells by laser patterning" online in the journal Nature, reporting for the first time the research results of breaking through 27% of the photoelectric conversion efficiency of crystalline silicon cells through full ...

    2024-10-18
    Vedi traduzione