Italiano

Preparation of all silicon dielectric metasurface by femtosecond laser modification combined with wet etching, achieving ideal compatibility with complementary metal oxide semiconductor technology

470
2023-10-23 14:53:50
Vedi traduzione

The fully dielectric element surface has the characteristics of low material loss and strong field localization, making it very suitable for manipulating electromagnetic waves at the nanoscale. Especially the surface of all silicon dielectric elements can achieve ideal compatibility with complementary metal oxide semiconductor technology, making it an ideal choice for large-scale monolithic integration of photonic chips. However, in traditional silicon micro processing, the combination of mask lithography and active ion etching involves multiple preprocessing stages, resulting in increased costs and processing time.

This article proposes a femtosecond laser direct writing method, which uses femtosecond laser to process silicon below the ablation threshold and wet chemical etching to achieve the surface of all silicon dielectric resonant elements. This method utilizes different etching rates between laser modified and untreated regions to achieve the manufacturing of large-scale patterned silicon surfaces in a simple and economical manufacturing method.

The Ioanna Sakellari team from Greece utilized ultrafast laser modification and wet chemical etching to form a two-dimensional micro nano circular array structure on silicon surface. By adjusting the size of micro nano stage units on the silicon surface and changing the surface diameter of the stage, the resonance frequency of the metasurface can be effectively controlled. The Fourier transform infrared spectra of linearly polarized incident light with different silicon based nano cone array structures were experimentally measured, and the scale of 200 was characterized μ M × two hundred μ The infrared light transmittance of different nano cone array structures of m, with a cone height of approximately 0.95 μ m. The period of the array in both the x and y directions is 2.42 μ m. The surface diameters on the circular platform are 220nm (green), 380nm (blue), and 740nm (red), respectively. The electron microscope images of different nano cone array structures prepared are shown in the following figure:

Figure 1. Structure of a two-dimensional micro nano cone array on silicon surface

Source: Sohu

Raccomandazioni correlate
  • Researchers use lasers to measure and manipulate magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-03-05
    Vedi traduzione
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    Vedi traduzione
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    Vedi traduzione
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    Vedi traduzione
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    Vedi traduzione