Italiano

Lumiotive Launches New LiDAR Sensor LM10

1469
2023-09-02 13:53:34
Vedi traduzione

Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.

The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in terms of cost, size, and reliability. As a solid-state optical semiconductor that can be mass-produced, LCM enables LiDAR to expand into new application fields.

Lumiotive also provides a reference design for M30, a production ready LiDAR sensor based on LM10 that sensor manufacturers can integrate into their LCM driver products.

Dr. Gleb Akselrod, founder and Chief Technology Officer of Lumiotive, commented, "After eight years of research and development, we are pleased to bring our first solid-state beam steering product to the market." LCM technology utilizes revolutionary dynamic metasurface physics principles to actively guide light without any moving components, achieving unprecedented capabilities in 3D sensing and many other software controlled beam shaping applications.

Dr. Sam Heidari, CEO of Lumiotive, added, "With LM10, we are entering a new era of programmable optics. By combining the transformative power of metamaterials with our patented semiconductor manufacturing processes, we are achieving low-cost mass production and making 3D sensing defined by software popular.

Lumotive's partner and customer network, as well as leading industry analysts, shared their comments on the potential impact of the LM10 launch on their market and the future of all 3D sensing LCMs.

Pierre Boulay, senior technical and market analyst at Yole Intelligence, a subsidiary of the Yole Group, stated: "Solid state beam steering technology is the future of 3D sensing. Whether it is guiding autonomous vehicle, providing advanced robotics for manufacturing, or enhancing the interactivity and functions of consumer electronics, LuMotive's LM10 is part of this wave of change, providing the precise progress needed to unlock new levels of efficiency, safety and innovation."

Matt Everett, Senior Director of Lumentum Product Line Management, stated: The dynamic metasurface technology used in LM10 can expand the range of laser components in LiDAR systems and improve energy utilization. The integration between Lumotive and Lumentum enables true solid-state VCSEL LiDAR to have compact software defined features while providing unparalleled flexibility and performance. LM10 enables enterprises to achieve the vision that LiDAR can achieve, completely changing the industry, and opening up new horizons for innovation.

James Suh, CEO of Namuga, said, "The LM10 LiDAR sensor and its digital beam steering capability enable us to integrate the unique advantages of scanning LiDAR systems into the same embeddable form factor as other 3D sensing cameras.

Axibo CEO Anoop Gadhrri said, "With its advanced scanning function and dynamic region of interest adjustment, the LM10 chip has completely changed the theme tracking and autofocus of photo and video camera systems." This innovative solution not only improves the quality and accuracy of our movie automation, but also provides unprecedented creative possibilities for cinematographers, VR/AR developers, and visual storytellers.

Wim Wuyts, Chief Business Officer of Gpixel, stated: As a partner of Lumiotive, we are deeply impressed by the excellent ability of the LM10 LiDAR sensor to expand the range of flight time sensors such as GTOF0503 without sacrificing external dimensions or reliability. By overcoming the limitations of pure flash lighting, the LM10 LiDAR sensor opens up new possibilities for advanced imaging, and we are particularly optimistic about its excellent performance enhancement for robot navigation in logistics environments.

Source: OFweek

Raccomandazioni correlate
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    Vedi traduzione
  • Huagong Technology and Far East Control signed a strategic cooperation agreement to collaborate on the application and digital transformation and upgrading of "laser+intelligent manufacturing"

    On October 16th, Huagong Technology signed a strategic cooperation agreement with Far East Holdings Group Co., Ltd. The two industry leaders will engage in deep cooperation in multiple fields to promote the development and innovation of their businesses. Both parties will work together to enhance the application of "laser+intelligent manufacturing" and the level of digital transformation and upgra...

    2023-10-18
    Vedi traduzione
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    Vedi traduzione
  • Outlook - Future of miniaturized lasers

    The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks ...

    2023-12-19
    Vedi traduzione
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    Vedi traduzione