Italiano

Aerosol jet printing can completely change the manufacturing of microfluidic devices

456
2024-02-02 18:12:01
Vedi traduzione

Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.

A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various materials, greatly reducing development time.

In a study published in Microsystems and Nanoengineering, researchers from Duke University and Virginia Tech were the first to integrate aerosol jet printing technology into the manufacturing of SAW microfluidic devices. This progress provides a faster, more universal, and cleanroom free method for developing chip laboratory applications, completely changing the field from biology to medicine.

In this groundbreaking study, the team utilized aerosol jet printing to manufacture SAW microfluidic devices. This method contrasts sharply with traditional and cumbersome cleanroom processes.

It involves depositing various conductive materials onto substrates to form interdigital transducers, which is crucial for generating SAW to manipulate fluids and particles at the microscale.

It is worth noting that this method reduces the manufacturing time of each device from approximately 40 hours to approximately 5 minutes. The team thoroughly analyzed the acoustic performance of these printing equipment using a laser Doppler vibrometer and compared it with the equipment manufactured in the cleanroom.

The results demonstrate enormous potential, with printing equipment exhibiting similar or acceptable performance levels in terms of resonant frequency and displacement field. This study represents a significant advancement in the manufacturing of microfluidic devices, providing a faster, more adaptable, and more efficient alternative to traditional methods.

Dr. Tian Zhenhua, co-author of the study, said, "This is not just a step forward; it is a leap towards the future of microfluidic device manufacturing. Our method not only simplifies the process, but also opens up new possibilities for device customization and rapid prototyping design.".

The impact of the new method is enormous, as it provides a more convenient, faster, and cost-effective way to produce microfluidic equipment. It has the potential to accelerate research and development in numerous fields, enabling faster diagnosis, improved drug delivery systems, and enhanced biochemical analysis.

In addition, the versatility of this technology indicates its adaptability to various materials and substrates, and it is expected to be widely applied in various disciplines.

Source: Laser Net

Raccomandazioni correlate
  • Fiber laser and deburring machine have improved the production efficiency and manufacturing capability of MITS Alloy

    The heavy-duty aluminum Ute tray and roof series of MITS Alloy have been greatly welcomed and demanded.The company is headquartered in Newcastle and was founded by Tim Lightfoot and Tony Brooks in January 2015. Tim's existing business, Safety MITS, provides maintenance equipment for mining, earthwork transportation, transportation, and related industries. They jointly determined that the four-whee...

    2024-05-15
    Vedi traduzione
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    Vedi traduzione
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Vedi traduzione
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    Vedi traduzione
  • The 2025 Munich Laser Exhibition has come to a successful conclusion

    Around 1,400 exhibitors and 44,000 visitors created “optimistic atmosphere”, says Messe München.Laser World of Photonics 2025 in Munich, Germany, came to a close on Friday, having set a new record for number of exhibitors and new innovations, said the organizer Messe München. Last week, 1,398 exhibitors from 41 countries presented the full spectrum of photonic technologies to around 44,000 visitor...

    06-30
    Vedi traduzione