Italiano

Diffractive optical elements: the behind the scenes hero of structured light laser technology

348
2024-04-10 14:45:47
Vedi traduzione

In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Holoor and everyone explore the world of DOE in depth, unveiling its mysterious veil.

What is a diffractive optical element?
Simply put, diffractive optical elements are like a special transparent window that can precisely shape and control the laser beam passing through it through diffraction effects - the bending phenomenon of light when passing through small holes or slits. By creating a controlled phase delay along the path of the laser beam, DOE can generate diffraction rays with preset orders, thereby generating any desired beam pattern.

How does DOE generate structured light?
Structured light, in short, is light that is integrated into a specific pattern for three-dimensional measurement and analysis of objects. To generate this type of structured light, DOEs typically adopt a periodic grating like structure design, which allows them to generate any desired order distribution from simple lines to complex grids. This flexibility and precision make DOE an indispensable part of structured light laser technology.

Unique advantages of DOE
A significant advantage of DOEs is that they are not sensitive to the center of the beam size, which means that regardless of how the diameter of the beam changes, DOEs can maintain consistency in their shaping effect. This sturdy and durable feature, combined with their ability to easily integrate into structured light laser sources, enables DOEs to demonstrate high reliability and efficiency in various application scenarios.

Beam shaping diffusers and other applications
In addition to traditional periodic grating structures, DOE also includes other types of components such as beam shaping diffusers. These diffusers can generate multiple beam patterns such as lines, linear arrays, grids, and even more unique distributions required for special structured light applications, such as in tube sensing. These diverse beam modes further expand the application range of structured light laser technology, from industrial manufacturing to medical imaging, and then to safety monitoring and other fields.

conclusion
Diffractive optical elements are the behind the scenes heroes in structured light laser technology. They not only provide an efficient and reliable way to generate and control structured light, but also open up new possibilities for various 3D measurement and image capture tasks. With the continuous advancement of technology, we can expect Holoor DOE to bring more innovation and breakthroughs in the future, helping us explore and understand the world around us in a new way. Under the guidance of light, the unknown and complex three-dimensional world will gradually become clear and visible, revealing its unique beauty and secrets.

Source: Sohu

Raccomandazioni correlate
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Vedi traduzione
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    Vedi traduzione
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    Vedi traduzione
  • Alliance unit Radiant High Tech Blue Purple Laser Assists in Ocean Exploration

    The ocean covers over 71% of the Earth's surface, and so far humans have only explored about 5% of the ocean. This means that there are still 95% of the depths of the ocean that we know nothing about, making it the most mysterious and unknown place on our planet.600 years ago, Zheng He led a fleet to play the prelude to the era of great navigation, laying the foundation for us to understand the wo...

    2023-11-06
    Vedi traduzione
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    Vedi traduzione