Italiano

Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

178
2023-08-31 15:55:36
Vedi traduzione

In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.

In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team analyzed gemstone samples such as olivine, beryl/emerald, Tianhe stone, and amethyst to learn more about their chemical composition. Doing so can give researchers a better understanding of ancient Egyptian history, which may help determine the trade routes of ancient civilizations. Researchers compared these gemstones with olivine samples found in the Harat Kishb lava field in western Saudi Arabia.

Gems are valuable artifacts in archaeology. Gemstones have significant historical and cultural significance. By discovering ancient gemstones, archaeologists can use them to piece together what ancient society may have looked like and the values of people living in that era. These cultural relics reflect both cultural significance and visual beauty. However, finding an effective and efficient detection method to distinguish between natural gemstones and synthetic gemstones may be challenging, and spectroscopic techniques may be helpful in this process.

For example, LIBS is an effective technique that can distinguish different gemstone groups. By analyzing specific spectral windows, researchers identified the unique characteristic elements of each gemstone variety. Raman spectroscopy and Fourier transform infrared spectroscopy can also serve as valuable tools to provide unique molecular fingerprints that indicate possible changes over time. FT-IR even revealed specific functional groups in these gemstones that present charming colors.

In this study, three experimental methods were used, with each spectral technique using one method. The experimental setup for LIBS analysis involves the use of a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The Eschelle spectrometer is coupled with an ICCD camera and LIBS software is used to analyze LIBS spectra. FT-IR analysis was performed using the 4100 Jasco spectrometer in the vibration range of 400-4000 cm-1 wavenumber, using potassium bromide as a reference. Raman analysis was performed using a confocal Raman microscope manufactured in Germany under the conditions of 473/532/633 nm laser excitation, z-focusing, and software controlled X-ray sample stage for line scanning and mapping.

Gem enthusiasts, historians, and gem traders will benefit from their ability to track the origin and authenticity of gemstones, allowing them to glimpse the ancient past.

Source: Laser Network

Raccomandazioni correlate
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Vedi traduzione
  • Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

    Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.The importance of micr...

    2023-09-27
    Vedi traduzione
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    Vedi traduzione
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Vedi traduzione
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    Vedi traduzione