Italiano

The new chip opens the door to artificial intelligence computing at the speed of light

233
2024-02-18 10:16:33
Vedi traduzione

Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.

The design of a silicon photonic chip was the first to combine the Benjamin Franklin Medal winner with H Professor Nedwell Ramsey Nader Engheta's pioneering research on manipulating materials at the nanoscale to use light for mathematical calculations is combined with the SiPh platform, which uses silicon as a cheap and abundant element for large-scale production of computer chips.

The interaction between light waves and matter represents a possible way to develop computers that have replaced the limitations of today's chips, which are basically based on the same principles as chips in the early stages of the computing revolution in the 1960s.

In a paper published in Nature Photonics, Engheta's team, along with the team of Associate Professor of Electrical and Systems Engineering Firoz Aflatouni, described the development of a new chip.

"We have decided to work together," Engheta said, leveraging the fact that Aflatouni's research team has pioneered nanoscale silicon devices.

Their goal is to develop a platform to perform so-called vector matrix multiplication, which is the core mathematical operation of neural network development and functionality. Neural networks are the computer architecture of today's artificial intelligence tools.

Engheta explained, "You're not using highly uniform silicon wafers, but making the silicon thinner, such as 150 nanometers," but only in specific areas. These height changes - without adding any other materials - provide a way to control the propagation of light through the chip, as the height changes can be distributed to cause light to scatter in specific modes, allowing the chip to perform mathematical calculations at the speed of light.

Aflatouni said that due to restrictions imposed by commercial foundries producing chips, this design is ready for commercial applications and may be applicable to graphics processing units. With the widespread interest in developing new artificial intelligence systems, the demand for graphics processing units has surged.

"They can use silicon photonics platforms as additional components," Aflatouni said, "and then you can accelerate training and classification speed.".

In addition to faster speeds and lower energy consumption, Engheta and Aflatouni chips also have privacy advantages: because many calculations can be performed simultaneously, sensitive information does not need to be stored in the computer's working memory, making future computers driven by this technology almost impossible to crack.
"No one can invade non-existent memory to access your information," said Aflatouni.

Other co authors include Vahid Nikkhah, Ali Pirmoradi, Farshid Ashtiani, and Brian Edwards from the School of Engineering at the University of Pennsylvania.

Source: Laser Net

Raccomandazioni correlate
  • MICRONICS launches its innovative SLS 3D printer product

    3D printing company Micronics announced the launch of its new Micron desktop selective laser sintering (SLS) 3D printer.The company stated that Micron is priced at $2999 and aims to bring industrial grade 3D printing capabilities to desktops for professionals and hobbyists. One of the main features of Micron is its ability to print complex objects without the need for supporting structures. This i...

    2024-06-17
    Vedi traduzione
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    Vedi traduzione
  • Enhanced laser heterodyne spectroscopy contributes to the measurement of atmospheric greenhouse gases

    The research team led by Professor Gao Xiaoming of the Chinese Academy of Sciences Hefei Institute of Physical Sciences has improved the measurement accuracy of atmospheric greenhouse gases by using erbium-doped fiber amplifier assisted laser heterodyne radiometer.The study was published in the Journal of Optics and was selected as an editor's selection.LHR is renowned for its high sensitivity and...

    2023-10-25
    Vedi traduzione
  • Mechanism of Time Power Modulation Increasing Weld Depth in High Power Laser Welding

    Researchers from the Hanover Laser Center and Leibniz University in Germany reported on the mechanism of increased welding depth during time power modulation in high-power laser beam welding. The related paper titled "Mechanisms of Increasing Welding Depth during Temporary Power Modulation in High Power Laser Beam Welding" was published in Advanced Engineering Materials.Understanding the basic mec...

    2024-12-18
    Vedi traduzione
  • China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

    Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoros...

    2024-06-28
    Vedi traduzione