Deutsch

Laser driven leap forward: the next generation of magnetic devices for controlling light is born

637
2023-12-21 17:53:12
Übersetzung anzeigen

Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.

This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-term challenge in this field in the past. It is expected to make progress in compact magneto-optical isolators, miniaturized lasers, high-resolution displays, and small optical devices.

Laser heating of transparent magnetic materials

Specifically, researchers from Tohoku University and Toyohashi University of Technology in Japan have developed a new method for manufacturing transparent magnetic materials using laser heating.

"The key to this achievement lies in the creation of 'cerium substituted yttrium iron garnet' (Ce: YIG), a transparent magnetic material that uses specialized laser heating technology," said Taichi Goto, associate professor and co-author of the Institute of Electronic Communications (RIEC) at Tohoku University in Japan. "This method breaks through the key bottleneck of integrating magneto-optical materials with optical circuits without damaging them - a problem that hinders the progress of miniaturization in optical communication equipment."

Magnetic optical isolators in optical communication

Magnetic optical isolators are crucial for ensuring stable optical communication. They are like traffic lights directing, allowing them to move in one direction but not in another direction. Integrating these isolators into silicon-based photonic circuits is challenging as they typically involve high-temperature processes.

Due to this challenge, Taichi Goto and his colleagues focused their attention on laser annealing - a technique that selectively heats specific areas of materials using lasers. This enables precise control, affecting only the target area without affecting the surrounding area.

Previous studies have used it to selectively heat bismuth substituted yttrium iron garnet (Bi: YIG) thin films deposited on dielectric electron microscopy. This allows Bi: YIG to crystallize without affecting the dielectric electron microscopy.

However, when using Ce: YIG (which is an ideal material for optical devices due to its magnetic and optical properties), problems arise as exposure to air can lead to unnecessary chemical reactions.

To avoid this situation, researchers have designed a new device that heats materials in a vacuum, which means there is no air and laser is used. This allows for precise heating of small areas (approximately 60 microns) without altering the surrounding materials.

The impact on optical technology

Goto added, "The transparent magnetic materials created through this method are expected to significantly promote the development of compact magneto-optical isolators, which is crucial for stable optical communication. In addition, it opens the way for the manufacture of powerful miniaturized lasers, high-resolution displays, and small optical devices."

Ähnliche Empfehlungen
  • Creativity Falcon 2 laser cutting machine will be launched in Germany equipped with a new 60W laser head

    Starting from June 20th, The Creativity Falcon 2 laser cutting machine will also be launched in Germany, equipped with a new 60W laser head. With this ability, fully encapsulated equipment can now also be carved into steel. High power is achieved through twelve 5-watt laser diodes, whose beams are combined with each other. This will make it possible to cut 22mm thick lime wood and 30mm thick or...

    2024-05-29
    Übersetzung anzeigen
  • The birth of multi photon 3D laser printing technology: printing millions of particles within 1 second

    Multi photon 3D laser printing technology, as a disruptive micro manufacturing technology, is facing two major challenges: speed and material compatibility. However, the latest research has made breakthrough progress, successfully increasing printing speed tenfold while maintaining excellent detail accuracy.In this remarkable study, scientists abandoned the traditional single beam printing method ...

    2024-04-19
    Übersetzung anzeigen
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    Übersetzung anzeigen
  • Laser Photonics wins a large order from Lufthansa Technologies subsidiary

    Recently, American laser cleaning system developer Laser Photonics announced that the company has successfully secured an order for a cleaning technology laser cleaning system from Lufthansa Technik Puerto Rico, a technology subsidiary of Lufthansa, the largest aviation group in Europe.Lufthansa Technik is the world's largest independent provider dedicated to providing maintenance, repair, and com...

    2023-12-19
    Übersetzung anzeigen
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    Übersetzung anzeigen