Deutsch

New nanophotonic circuits demonstrate the potential of quantum networks

547
2024-08-14 11:21:40
Übersetzung anzeigen

The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue of Physical Review X.

The newly developed technology utilizes laser cooling to capture atoms in integrated nanophotonic circuits. Light propagates through a tiny photon "line" (a waveguide that is 1/200 thinner than a human hair). These atoms are frozen to minus 273.15 degrees Celsius and are essentially in a static state. At such low temperatures, atoms can be captured by a pulling beam aimed at a photonic waveguide and placed at a distance much shorter than the wavelength of light (approximately 300 nanometers). Within this distance, atoms can effectively interact with photons in the photonic waveguide.

Researchers are conducting experiments
Using the most advanced nanomanufacturing instruments, the team designed a photonic waveguide into a circular structure with a diameter of approximately 30 microns, forming a so-called micro ring resonator. Light will circulate within the micro ring resonator and interact with the captured atoms.

This atomic coupled micro ring resonator is like a transistor for photons. People can use these captured atoms to control the flow of light through circuits. If atoms are in the correct state, photons can be transmitted through circuits. If the atom is in another state, photons will be completely blocked. The stronger the interaction between atoms and photons, the more effective the "gate" of passage and obstruction.

The team captured up to 70 atoms, coupling them all to photons and controlling their transmission on an integrated photonic chip, achieving a "collective" high-intensity interaction with light.

This research result can provide photon links for future distributed quantum computing based on neutral atoms. It can also serve as a new experimental platform for studying light matter interactions or ultra cold molecules.

Source: Opticsky

Ähnliche Empfehlungen
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    Übersetzung anzeigen
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    Übersetzung anzeigen
  • The research team developed additive manufacturing (AM) technology based on hydrogel injection, and related research was published on Nano Letters

    It is reported that the research team of California Institute of Technology has developed an additive manufacturing (AM) technology based on hydrogel injection, which uses two-photon lithography technology to produce 3D metal with a characteristic resolution of about 100 nm.The relevant research is published in the journal Nano Letters, titled 'Suppressed Size Effect in Nanopillars with Hierarchy ...

    2023-09-25
    Übersetzung anzeigen
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    Übersetzung anzeigen
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    Übersetzung anzeigen