Deutsch

A US research team has developed a new type of photonic memory computing device

817
2024-10-24 11:36:03
Übersetzung anzeigen

Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integrated non recurrent magneto optics with ultra high endurance for photonic in memory computing," were published in Nature Photonics.

Photon computing has become one of the important directions for the future development of artificial intelligence and machine learning due to its advantages of high speed and low energy consumption. However, the current photon processing architecture faces challenges such as slow storage array update speed, high energy consumption, and insufficient durability. The non reciprocal magneto-optical technology proposed by the research team has successfully solved these bottlenecks by integrating cerium doped yttrium iron garnet with silicon micro ring resonators. By utilizing the non reciprocal phase shift properties of this material, researchers have demonstrated fast programming (1 nanosecond), low energy consumption (143 femjoules per bit), and excellent durability (programmable 2.4 billion cycles) of photonic memory cells.

 


Figure a. Schematic diagram of computing architecture and unit devices; d. Schematic diagram of memory unit.


The core of this technology is to encode optical weights through the non reciprocal phase shift effect generated by magneto-optical materials in micro ring resonators. Unlike existing photon weights based on thermal or plasmonic dispersion effects, non reciprocal magneto-optical weights not only improve programming speed, but also significantly enhance the device's fatigue resistance and multi-level storage capability. The research team also pointed out that the photon computing platform using this new architecture is expected to provide higher computational efficiency for matrix vector multiplication (MVM) in artificial intelligence.

The photon memory unit demonstrated in this study can update weights at a very high programming speed with high-speed response and low energy consumption, greatly reducing the overall energy burden of the system. Especially in applications such as deep learning that require large-scale computing, this technology can significantly reduce the computational bottleneck of traditional electrical architectures through non-volatile, multi bit storage, further promoting the development of future computing architectures towards more efficient and green directions.

Based on the future development prospects of this technology, researchers believe that by further optimizing the integration of materials, such as utilizing spin orbit torque or spin torque transfer effects, it is possible to achieve higher switching efficiency. In addition, with the advancement of single-chip integration technology between cerium doped yttrium iron garnet and silicon photonic devices, this technology has enormous potential for future applications in fields such as photon computing and magnetic storage.

Source: Opticsky

Ähnliche Empfehlungen
  • Sivers Semiconductors, an optoelectronic semiconductor company, splits off its photonics business and goes public independently

    Recently, Sivers Semiconductors, a leading supplier of integrated chips and photonics modules for communication and sensing solutions, announced a significant strategic initiative:It will divest its subsidiary Sivers Photonics Ltd, which has signed a non binding letter of intent (LOI) with byNordic Acquisition Corporation and plans to achieve independent listing through a merger. This move aims ...

    2024-08-26
    Übersetzung anzeigen
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    Übersetzung anzeigen
  • Laser based deformation may lead to self optimized aircraft wings

    Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able ...

    2024-01-18
    Übersetzung anzeigen
  • Researchers have manufactured chip based optical resonators that can operate in the ultraviolet (UV) and visible light regions of the spectrum

    Figure: Researchers have created a chip based ring resonator that operates in the ultraviolet and visible light ranges and exhibits record low UV loss. The resonator (small circle in the middle) is displayed as blue light.Researchers have created chip based photonic resonators that can operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit record low UV loss. The ne...

    2023-10-06
    Übersetzung anzeigen
  • Han's Laser senior management resigns

    Just now, Han's Laser Technology Industry Group Co., Ltd. announced the resignation of senior management personnel. The board of directors recently received a written resignation report from Mr. Zhao Guanghui, the deputy director of the company's management and decision-making committee. Mr. Zhao Guanghui has applied to resign from his position as deputy director of the company's management and de...

    06-09
    Übersetzung anzeigen