Deutsch

A US research team has developed a new type of photonic memory computing device

493
2024-10-24 11:36:03
Übersetzung anzeigen

Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integrated non recurrent magneto optics with ultra high endurance for photonic in memory computing," were published in Nature Photonics.

Photon computing has become one of the important directions for the future development of artificial intelligence and machine learning due to its advantages of high speed and low energy consumption. However, the current photon processing architecture faces challenges such as slow storage array update speed, high energy consumption, and insufficient durability. The non reciprocal magneto-optical technology proposed by the research team has successfully solved these bottlenecks by integrating cerium doped yttrium iron garnet with silicon micro ring resonators. By utilizing the non reciprocal phase shift properties of this material, researchers have demonstrated fast programming (1 nanosecond), low energy consumption (143 femjoules per bit), and excellent durability (programmable 2.4 billion cycles) of photonic memory cells.

 


Figure a. Schematic diagram of computing architecture and unit devices; d. Schematic diagram of memory unit.


The core of this technology is to encode optical weights through the non reciprocal phase shift effect generated by magneto-optical materials in micro ring resonators. Unlike existing photon weights based on thermal or plasmonic dispersion effects, non reciprocal magneto-optical weights not only improve programming speed, but also significantly enhance the device's fatigue resistance and multi-level storage capability. The research team also pointed out that the photon computing platform using this new architecture is expected to provide higher computational efficiency for matrix vector multiplication (MVM) in artificial intelligence.

The photon memory unit demonstrated in this study can update weights at a very high programming speed with high-speed response and low energy consumption, greatly reducing the overall energy burden of the system. Especially in applications such as deep learning that require large-scale computing, this technology can significantly reduce the computational bottleneck of traditional electrical architectures through non-volatile, multi bit storage, further promoting the development of future computing architectures towards more efficient and green directions.

Based on the future development prospects of this technology, researchers believe that by further optimizing the integration of materials, such as utilizing spin orbit torque or spin torque transfer effects, it is possible to achieve higher switching efficiency. In addition, with the advancement of single-chip integration technology between cerium doped yttrium iron garnet and silicon photonic devices, this technology has enormous potential for future applications in fields such as photon computing and magnetic storage.

Source: Opticsky

Ähnliche Empfehlungen
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    Übersetzung anzeigen
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    Übersetzung anzeigen
  • Lorenz competes in the LiDAR market with MEMS galvanometer technology

    At the recently concluded 2024 International Consumer Electronics Show (CES), automotive related technologies and solutions shone brightly, and a group of Chinese LiDAR suppliers competed on the same stage.The technologically advanced products, systematic solutions, continuously increasing delivery and market retention have to some extent proven that in the context of the development of automotive...

    2024-04-13
    Übersetzung anzeigen
  • Research Progress in High Efficiency Supercontinuum Spectra in Specific Wavebands Made by Shanghai Optics and Machinery High Power Laser Unit Technology Laboratory

    Recently, the High Power Laser Unit Technology Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in research on high efficiency supercontinuum in specific bands. The relevant research results were published in the Journal of Lightwave Technology under the title of "Strong Anti Stokes and flat supercontinuum in specified band based on non ...

    2023-10-17
    Übersetzung anzeigen
  • GE Additive has been renamed Colibrium Additive, continuing to lead the additive manufacturing industry

    In April 2024, GE Additive was renamed Colibrium Additive. Colibrium Additive (formerly GE Additive) is a subsidiary of GE Aerospace Propulsion and Additive Technology (PAT) and was established at the end of 2016. Nowadays, it is a trusted partner and manufacturer of industrial metal 3D printers and metal powders, as well as a service provider for industrial metal 3D printers and metal powders. It...

    2024-04-30
    Übersetzung anzeigen