Deutsch

Sivers Semiconductors, an optoelectronic semiconductor company, splits off its photonics business and goes public independently

618
2024-08-26 11:15:43
Übersetzung anzeigen

Recently, Sivers Semiconductors, a leading supplier of integrated chips and photonics modules for communication and sensing solutions, announced a significant strategic initiative:

It will divest its subsidiary Sivers Photonics Ltd, which has signed a non binding letter of intent (LOI) with byNordic Acquisition Corporation and plans to achieve independent listing through a merger.

 



This move aims to create an independent, publicly traded photonics company and lay a solid financial foundation for the merged company after divesting the SPAC structure, ensuring sufficient cash flow.

Sivers Semiconductors consists of two wholly-owned subsidiaries, each specializing in the wireless and photonics markets. Among them, Sivers Photonics, as a leader in the field of semiconductor photonic devices, focuses on the research and development of indium phosphide (InP) laser source technology, providing customized laser solutions for high growth fields such as data centers, consumer health care, and automotive LiDAR, empowering artificial intelligence infrastructure and advanced sensing applications.

Based on over 25 years of research and development experience, Sivers Photonics has built a unique technological system, with a team of 80 elites including 12 PhDs. The company holds multiple patents worldwide and collaborates with leading companies in the field of silicon photonics (SiPh) such as Ayar Labs to explore innovative paths for high-performance lasers. At the same time, the company has also engaged in in-depth exchanges with multiple artificial intelligence giants and supercomputing companies to seek future development.

After the implementation of this spin off and merger plan, Sivers Semiconductors' wireless business unit will focus on the research and sales of millimeter wave beamforming front-end integrated circuits, RF transceivers, repeaters, and satellite and 5G infrastructure software algorithms. This sector achieved a significant increase in net income in 2023, reaching approximately $15 million, demonstrating strong market competitiveness and growth potential.

Sivers Photonics holds a leading position in the field of direct chip integration of tunable multi wavelength lasers. With the surge in demand for GPUs in generative artificial intelligence, it is expected that the inter chip connectivity market will experience explosive growth.

According to industry predictions, the total size of related markets is expected to reach billions of dollars by 2027. Faced with this vast prospect, Sivers Photonics is actively laying out silicon photonics solutions for data centers with its technological advantages, aiming to improve data transmission efficiency and significantly reduce energy consumption through optical transmission technology.

In addition, Sivers Photonics has also made achievements in the field of consumer grade biometric sensors, and its photon laser technology is driving innovation and development in wearable health products. The company has signed development contracts worth over 18 million US dollars with important clients to jointly promote the optimization and upgrading of biometric sensors. Although the market is still in its infancy, Sivers Photonics has built a unique competitive advantage in this field with its strong research and development capabilities.

Bami Bastani, Chairman of Sivers Semiconductor, said, "We firmly believe in the unlimited potential of the artificial intelligence photonics field, but this potential is often overshadowed by equally outstanding wireless businesses. Given the enormous potential of silicon photonics in artificial intelligence infrastructure and the emerging demand for photonics biometric sensors, we believe it is time to separate the photonics business in order to better enter the US capital market and create more value for shareholders. At the same time, we will continue to leverage the advantages of wireless business in satellite and 5G fields to drive the overall development of the company.

After the completion of this transaction, Sivers Photonics, as an independent listed entity in the United States, will be closer to the core of the American artificial intelligence ecosystem to attract the attention of investors, customers and partners. Given that approximately 80% of Sivers Photonics' net revenue currently comes from the US market, this strategic adjustment will undoubtedly inject strong momentum into its future development.

According to the non binding terms of the letter of intent, byNordic and Sivers intend to reach a final agreement to acquire Sivers Photonics. The completion of the business merger depends on the completion of due diligence, negotiation and signing of final documents, and satisfaction of the conditions contained therein, including (i) ensuring certain simultaneous financing, (ii) completing any necessary stock exchange and regulatory reviews, and (ii) obtaining approval from the boards and shareholders of byNordic and Sivers Photonics.

The terms of the proposed transaction stipulate that Sivers Photonics will be spun off and merged with byNordic, and the merged listed company will be held by the original shareholders of Sivers Photonics and byNordic. Sivers will have a majority stake in the merged listed company. Once the merger is completed, the company plans to establish its headquarters in Silicon Valley, California, while manufacturing operations will continue to remain in the UK.

Sivers management will update this announcement when these issues are further clarified. During this period, given the sensitivity of the negotiations, Sivers management will not provide further comments beyond those described in the press release. Setterwalls and Pillsbury Winthrop Shaw Pittman LLP are serving as legal advisors to Sivers Semiconductor Company. Loeb&Loeb LLP is serving as legal counsel for byNordic Acquisition Corporation.

Source: OFweek

Ähnliche Empfehlungen
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    Übersetzung anzeigen
  • GF Machining Solutions will showcase the latest members of its laser tradition on EPHJ

    At the EPHJ exhibition, GF Machining Solutions will showcase its latest laser solutions for microfabrication and 3D surface texture processing. Inspired by 70 years of innovation in the machine tool industry and 15 years of mastery of laser technology, GF Machining Solutions' latest innovations enable manufacturers to take speed and accuracy to new levels - they can experience it firsthand at EP...

    2024-06-06
    Übersetzung anzeigen
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

    The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is re...

    2024-10-14
    Übersetzung anzeigen
  • Danish scientists have created solar cells based on selenium using a new laser annealing technique

    A team of scientists at the Technical University of Denmark has created a selene-based solar cell by replacing thermal annealing with a new laser annealing strategy."In our work, we investigated the potential of this laser annealing strategy specifically for selenium thin film solar cells, and we report a new world record for fill factor, a new world record for ideal factor, and the most advanced ...

    2023-09-06
    Übersetzung anzeigen
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Übersetzung anzeigen