Deutsch

Researchers have manufactured chip based optical resonators that can operate in the ultraviolet (UV) and visible light regions of the spectrum

866
2023-10-06 11:44:19
Übersetzung anzeigen

 

Figure: Researchers have created a chip based ring resonator that operates in the ultraviolet and visible light ranges and exhibits record low UV loss. The resonator (small circle in the middle) is displayed as blue light.

Researchers have created chip based photonic resonators that can operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit record low UV loss. The new resonator lays the foundation for increasing the size, complexity, and fidelity of UV photonic integrated circuit (PIC) design, which can enable new microchip based devices for applications such as spectral sensing, underwater communication, and quantum information processing.

Compared to more mature fields such as telecommunications photonics and visible photonics, the exploration of ultraviolet photonics is relatively limited, despite the need for ultraviolet wavelengths to access certain atomic transitions and excite certain fluorescent molecules used for biochemical sensing in atomic/ion based quantum calculations, "said Cheng He, a research team member at Yale University. Our work has laid a solid foundation for constructing photonic circuits that operate at ultraviolet wavelengths.

In Optics Express, researchers described optical microresonators based on alumina and how they achieved unprecedented low losses at UV wavelengths by combining the correct materials with optimized design and manufacturing.

Our work indicates that UV PICs have reached a critical point where the optical loss of waveguides is no longer more severe than that of visible light, "said Hong Tang, the head of the research team. This means that all interesting PIC structures developed for visible and telecommunications wavelengths, such as frequency combs and injection locking, can also be applied to ultraviolet wavelengths.

Reduce light loss
The micro resonator is made of high-quality aluminum oxide film, which was prepared by Integras using a highly scalable atomic layer deposition (ALD) process. The large bandgap (~8eV) of alumina makes it transparent to ultraviolet photons with much lower energy (~4eV) than the bandgap. Therefore, this material does not absorb ultraviolet rays.

The previous record was completed using aluminum nitride, with a bandgap of~6eV, "he said. Compared to single crystal aluminum nitride, amorphous ALD alumina has fewer defects and is less difficult to manufacture, which helps us achieve lower losses.

In order to manufacture micro resonators, researchers etched aluminum oxide to create what is commonly known as a ridge waveguide, in which a plate with a strip at the top forms a structure that restricts light. The deeper the spine, the stronger the constraint, but the greater the scattering loss. They use simulation to find the appropriate etching depth to achieve the required light constraints while minimizing scattering losses.

Manufacturing ring resonators
The researchers applied the knowledge they learned from waveguides to manufacturing circular resonators with a radius of 400 microns. They found that in a 400 nm thick alumina film, when the etching depth exceeds 80 nm, the radiation loss at 488.5 nm can be suppressed to less than 0.06 dB/cm, and the radiation loss at 390 nm can be suppressed to less than 0.001 dB/cm.

After manufacturing a ring resonator based on these calculations, researchers determined the Q-factor by measuring the width of the resonant peak, while scanning the optical frequency injected into the resonator. They found that the Q-factor reached a record high of 1.5 e6 at 390 nanometers (in the ultraviolet part of the spectrum), and 1.9 e6 at 488.5 nanometers (in the wavelength of visible blue light). The higher the q factor, the less optical loss.

He said, "Compared to PICs of visible light or telecommunication wavelengths, UV PICs may have advantages in communication due to their larger bandwidth or under conditions where other wavelengths are absorbed (such as underwater)." In addition, the atomic layer deposition process used for manufacturing alumina is compatible with CMOS, paving the way for the integration of CMOS and amorphous alumina based photonics.

Researchers are currently working on developing ring resonators based on alumina, which can be tuned to different wavelengths. This can be used to achieve precise wavelength control or to create modulators by using two mutually interfering resonators. They also want to develop an integrated PIC UV light source to form a complete PIC based UV system.

Source: Laser Network

Ähnliche Empfehlungen
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Übersetzung anzeigen
  • SuperLight Photonics receives strategic investment from Hamamatsu Ventures

    Recently, SuperLight Photonics, a leading laser technology manufacturer, announced that it has received strategic investment from global venture capital firm Hamamatsu Ventures, which will be used to promote long-term innovation and collaborative development of its laser technology. Hamamatsu Ventures focuses on investing in photonics companies that address future demand expectations, particular...

    2024-10-22
    Übersetzung anzeigen
  • Lingke LP series industrial connectors provide fast, reliable, and efficient electrical connections for laser equipment

    Laser technology is currently a very mature technology and has been used on various laser equipment, such as laser cutting machines, laser projectors, medical laser equipment, etc. Advanced laser equipment requires high-performance and reliable industrial connectors to provide stable and safe power input and connection, which is one of the key links for the normal operation of laser equipment.Ling...

    2023-10-25
    Übersetzung anzeigen
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    Übersetzung anzeigen
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    Übersetzung anzeigen