Deutsch

Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

719
2024-09-27 15:23:50
Übersetzung anzeigen

Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of the paper is Zhang Congfu, a 2021 doctoral student.

The mid infrared band (3-5 μ m) plays a crucial role as an atmospheric window in many fields such as biomedical and environmental monitoring. Traditional mid infrared detection and imaging technology faces many problems such as low detector sensitivity and large size. Nonlinear frequency upconversion technology converts mid infrared signal light into near-infrared or visible light bands, which can achieve high-sensitivity detection using silicon-based detectors with small size and high quantum efficiency, providing a new technological approach for mid infrared detection and imaging. Numerous studies have shown that metasurfaces can enhance the interaction between light and matter in sub wavelength nanostructures, breaking through the phase matching limitations of traditional nonlinear optical parametric processes. However, existing metasurfaces typically rely on narrowband high-quality factor resonances to achieve local field enhancement, which poses significant challenges for the further development of ultra wideband nonlinear frequency conversion technology.

Figure (a) Metasurface structural unit; (b) Dielectric constant curve; (c, d) absorption spectra; (e, f) Localized fields at different wavelengths


Figure (a) 3160 nm; (b) 916 nm;  (c) 710 nm. Distribution of electric field Ez component; (d, e) Upconverted light intensity generated by different signal light and pump light; (f) Upconversion light intensity generated under different signal light intensities

In response to the above issues, the research group proposed a method of using gap plasma mode to achieve mode field overlap and broadband enhancement. By designing hyperbolic metamaterials (HMMs) composed of Au ZnO multilayer structures with triangular pyramid shapes, the ultra wideband nonlinear frequency upconversion technology was theoretically verified for the first time in the 3-5 μ m mid infrared band. The gap plasma mode in HMMs multilayer structure excites high-order narrowband resonance at near-infrared pump light wavelength, while the slow light effect generated by dipole and hyperbolic dispersion achieves ultra wideband near-field enhancement at mid infrared wavelength. The symmetry breaking of the triangular structure localizes these resonance modes at the tip of the structure, which not only enhances the localized field in the dielectric material, but also achieves mode field overlap at different signal and pump wavelengths, significantly enhancing the nonlinear frequency conversion process. Thanks to the slow light effect, manipulating the geometry and materials of the basic units of metasurfaces can adjust the above modes, thereby achieving frequency conversion processes at specific wavelengths. The research results provide new ideas for the development of nonlinear frequency conversion technology based on metasurfaces, and provide technical support for the research of new mid infrared optoelectronic detection systems. It has important application value in the fields of mid infrared detection, imaging, sensing, and communication.

Source: Xi'an Institute of Optics and Fine Mechanics

Ähnliche Empfehlungen
  • Brother Australia launches innovative professional monochrome laser series

    Brother Australia is a renowned printing manufacturer that has expanded its product portfolio by launching its latest innovative commercial machine series, the professional monochrome laser machine series. These extraordinary devices are designed to extend the lifespan of commercial printing cycles and improve productivity. Due to their sturdy components and durable consumables, these extraordinar...

    2024-03-21
    Übersetzung anzeigen
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Übersetzung anzeigen
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    Übersetzung anzeigen
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    03-26
    Übersetzung anzeigen
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the field of femtosecond laser air filamentation self focusing threshold research

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the repetition rate dependent femtosecond laser air filamentation self focusing threshold. The relevant research results were published in Optics Express under the title "Pulse repetition rate ...

    2024-08-02
    Übersetzung anzeigen