繁体中文

A new approach to 3D printing has been published in a Nature journal

515
2024-11-29 15:06:57
查看翻譯

In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.

As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify alloy composition, achieve alloy simplification, and enable simpler materials to be widely used.

On November 21, 2024, Professor Zhang Mingxing from the University of Queensland and Professor Christopher Hutchinson from Monash University in Australia published a research paper titled "High performance plain carbon steel obtained through 3D printing" in the top international journal Nature Communications. Tan Qiyi and Haiwei Chang were co first authors of the paper, and Professor Zhang Mingxing and Professor Christopher Hutchinson were co corresponding authors.

Zhang Mingxing, Professor at the School of Mechanical and Mining Engineering, University of Queensland, Australia. I graduated from Baotou Iron and Steel Institute with a bachelor's degree in 1984. I obtained my master's and doctoral degrees from Northwestern Polytechnical University in 1987 and 1990. From 1990 to 1993, I taught at Baotou Iron and Steel Institute. In 1997, I obtained my doctoral degree from the University of Queensland. In 2000, I obtained my master's degree from Queensland University of Technology. Since 2003, I have been teaching at the University of Queensland.
Professor Zhang Mingxing's research interests include additive manufacturing of metals and MAX phase materials, high entropy alloys, new alloy design through machine learning, and the application of crystallography in engineering materials, metal surface engineering, and grain refinement of cast metals.

As of November 2019, he has published approximately 210 academic papers with an H impact factor of 46 and over 6600 citations, with 117 i10 impact factors. His papers have been published in internationally renowned journals such as Progress in Materials Science, Acta Materialia, Scripta Materialia, Corrosion Science, Metallurgical and Materials Transactions A/B, Applied Physics Letters, Journal of Applied Crystallography, Journal of Alloys and Compounds, and Materials&Design.

Here, the author demonstrates that high-performance ordinary carbon steel can be produced through 3D printing. The tensile and impact properties of the author's 3D printed ordinary carbon steel are comparable to or even better than ultra-high strength alloy steels such as martensitic aging steel.

The inherent continuous micro zone melting and rapid solidification of 3D printing provide sufficient cooling, which can directly form martensite and/or bainite, enhance the strength of steel, while maintaining the uniformity of microstructure and properties, without size limitations or heat treatment deformation and cracking.

By manipulating 3D printing parameters, researchers can adjust the microstructure to control the properties of customized applications.
This provides a scalable approach to reduce alloy complexity without compromising mechanical properties, and highlights the opportunity for 3D printing to help drive alloy simplification.


Figure 1: Hardenability and Metal 3D Printing of Ordinary Carbon Steel AISI 1080


Figure 2: Microstructure analysis of 3D printed 1080 steel


Figure 3: Microstructure analysis of 3D printed 1040 steel


Figure 4: Mechanical properties


In summary, this paper investigates the manufacturing of high-performance simple carbon steel through 3D printing technology and finds that the tensile and impact properties of this carbon steel can be comparable to or even superior to ultra-high strength alloy steel after 3D printing.
The research results indicate that 3D printing technology can simplify alloy composition, reduce costs and supply chain vulnerability, while improving material recyclability, which is of great significance for promoting the sustainable development and simplification of materials. This technology can provide a high-performance material solution for manufacturing high-strength, complex shaped structural components without the need for complex alloying; Due to the customization of material properties through 3D printing, it provides opportunities for specific industries such as aerospace, automotive manufacturing, and construction to optimize component design and performance.

Source: Yangtze River Delta Laser Alliance

相關推薦
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    查看翻譯
  • Germany Developed Short Wave Green Laser Underwater Cutting Technology

    With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plant...

    2023-09-18
    查看翻譯
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    查看翻譯
  • Cobot Systems announces the establishment of a partnership between UR+and its laser welding collaborative robot system

    Cobot Systems announced that it has now become a UR+partner and showcased laser welding unit systems. This honor marks an important milestone in the company's journey of providing widely available automated labor solutions. This approval highlights Cobot Systems' commitment to providing innovative solutions compatible with UoRobot (UR) products, ensuring seamless collaboration with integrated lase...

    2024-05-16
    查看翻譯
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    查看翻譯