繁体中文

Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

851
2024-03-23 10:21:42
查看翻譯

Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.

The new non cooled pump laser module is designed specifically for high-power, high-performance optical amplifiers and amplification ROADM line card applications. The non cooled pumped laser module adopts a compact 10 pin external size, which is market first:
Up to 1000 mW output power, suitable for submarine applications.
Up to 2x700 mW, providing both symmetric and asymmetric options on dual chip platforms.

These non cooling modules support the growth trend of energy-saving networks to achieve sustainable development goals. This reduces network ownership costs by reducing overall power consumption and eliminating many thermal and power management devices associated with traditional cooling lasers.

"The company released its first non cooled pump laser module in 2004 and its first dual chip module in 2011, making it a leader in non cooled and dual chip technologies," said Dr. Beck Mason, Executive Vice President of Telecommunications. Our latest G10 pump chip supports the successful development of our high-power non cooled pump laser modules. Combining a wide range of active and passive component product combinations, Coherent provides a leading solution portfolio for submarine and ground amplifier designers.

The certification work for the new single chip and dual chip ground modules will be completed by mid-2024. The samples have been launched and will begin mass production by the end of 2024.

Source: Laser Net

相關推薦
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    查看翻譯
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    查看翻譯
  • The 2023 International Quantum Photonics Conference attracted over 600 attendees from 16 countries and regions

    On November 25th, Jinhua welcomed the 2023 International Quantum Photon Conference, which will lead the future of technology. This grand event is jointly hosted by the Chinese Society of Optical Engineering and the Jinhua Municipal Government, with joint support from the University of Science and Technology of China, Zhejiang Normal University, and the PhotoniX journal. The conference, with the th...

    2023-11-27
    查看翻譯
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    查看翻譯
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    查看翻譯