繁体中文

Pressure sensing using dual color laser absorption spectroscopy

896
2024-03-09 13:58:51
查看翻譯

The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.

The results of this study have been published in Optics Letters.
Aircraft engines are transitioning towards high-temperature and high-pressure combustion to improve thermodynamic efficiency. Pressure is a key parameter for monitoring engine performance and diagnosing engine faults. However, traditional contact pressure sensors can disrupt combustion flow and are limited by the temperature tolerance of the sensor material.

The researchers of this study designed a non-contact pressure sensing technology for high-temperature environments and tested it at temperatures up to 1300 K. This study mainly addresses the challenge of considering the influence of molecular concentration on gas pressure measurement in such an environment.

Researchers have found that by connecting double absorption lines to widen the collision line width, concentration variables can be alleviated. This breakthrough enables researchers to achieve concentration independent pressure measurements.

To verify this discovery, considering that the main product of hydrocarbon fuel combustion systems is H2O, the team used double absorption lines of H2O near 1343 nm and 1392 nm in a precisely designed heating absorption cell. They each achieved 50 μ S and 3% time resolution and pressure measurement uncertainty.

Source: Laser Net

相關推薦
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    查看翻譯
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    查看翻譯
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    查看翻譯
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    查看翻譯
  • Telescope Discovers Record breaking Galaxy Space Laser

    A powerful telescope in South Africa has detected a space laser 5 billion light-years away from Earth, known as the "megamaser". Scientists named it Nkalakatha, which means "big boss" in Zulu language.Nkalakatha is the farthest hydroxyl giant detected so far, discovered by the MeerKAT telescope on the first night of the survey, which is expected to include 3000 hours of observation. The team of sc...

    2024-03-09
    查看翻譯