繁体中文

The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

537
2024-07-01 14:11:26
查看翻譯

According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress.

 


Image source: Nature website
Titanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they have not been widely applied in the real world. Because this type of laser is usually large in size and expensive, costing hundreds of thousands of dollars per unit, and requiring other high-power equipment (priced at approximately $30000 per unit) to maintain operation.

To solve this problem, researchers first laid a large layer of titanium sapphire on the silica platform; Grind, etch, and polish the titanium sapphire into an extremely thin layer, only a few hundred nanometers thick; Then, design a vortex composed of tiny ridges on the thin layer. These ridges are like fiber optic cables, guiding light to circulate continuously and gradually increasing in intensity. This mode is called a waveguide. Compared with other titanium sapphire lasers, this prototype has reduced its size by 4 orders of magnitude (equivalent to one thousandth of the original) and reduced its cost by 3 orders of magnitude (equivalent to one thousandth of the original).

The remaining part is a microscale heater that can heat the light passing through the waveguide, allowing researchers to change the wavelength of the emitted light and adjust the wavelength range to between 700-1000 nanometers, from red light to infrared light.

In quantum physics, this new laser can significantly reduce the scale of state-of-the-art quantum computers; In the field of neuroscience, it can be applied in optogenetics, allowing scientists to control neurons by guiding light inside the brain through relatively large optical fibers; In ophthalmology, it may be combined with chirped pulse amplification technology in laser surgery to achieve new applications, or provide cheaper and more compact optical coherence tomography technology to evaluate retinal health.

Currently, constantly updated technology allows many laboratories to have ultra small lasers on a single chip, rather than a large and expensive laser. Small size lasers actually help improve efficiency - mathematically speaking, intensity is equal to power divided by area. Therefore, maintaining the same power as large lasers but reducing their concentrated area will result in a significant increase in intensity. More importantly, these compact and powerful lasers can quickly leave the laboratory and serve many different important applications.

Source: Chinese Academy of Sciences

相關推薦
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    查看翻譯
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    查看翻譯
  • Nature Photonics reports a new type of nonlinear optical crystal - all band phase matched crystal

    Short wave ultraviolet all solid-state coherent light sources have the characteristics of strong photon energy, practicality and precision, and high spectral resolution. They have significant application value in laser precision processing, information communication, cutting-edge science, and aerospace fields.The core component of obtaining all solid-state shortwave ultraviolet lasers is nonlinear...

    2023-10-07
    查看翻譯
  • SuperLight Photonics receives strategic investment from Hamamatsu Ventures

    Recently, SuperLight Photonics, a leading laser technology manufacturer, announced that it has received strategic investment from global venture capital firm Hamamatsu Ventures, which will be used to promote long-term innovation and collaborative development of its laser technology. Hamamatsu Ventures focuses on investing in photonics companies that address future demand expectations, particular...

    2024-10-22
    查看翻譯
  • Amplitude's 2024 performance shows steady growth

    In 2024, Amplitude's performance will continue to maintain steady growth, thanks to our continuous innovation in femtosecond laser technology and deep market expansion The application performance of high-power femtosecond lasers in precision microfabrication and industrial manufacturing such as semiconductors is particularly impressive, "said Ruan Xia, Sales Director of Amplitude Laser Solutions D...

    02-17
    查看翻譯