繁体中文

Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

974
2025-04-07 17:28:35
查看翻譯

Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflective coatings. The research team has developed a 6-layer mid infrared double-sided anti reflective film based on HfO2/SiO2 material on a quartz substrate by optimizing the preparation process, with a laser-induced damage threshold (LIDT) of 91.91 J/cm;. The related achievements were published in Infrared Physics&Technology under the title "The performance of laser induced damage of a 2-4 μ m mid frared anti reflective coating based on HfO2/SiO2 materials".

The surface reflection loss of infrared optical components is significant, and anti reflective films have become the key to improving device efficiency. Traditional infrared anti reflective film materials (such as fluoride and sulfide) have problems such as insufficient stability and easy water absorption, while oxide materials (such as HfO2/SiO2) have become a research hotspot due to their high melting point, high environmental stability, and high LIDT.


Figure 1 (a) Transmittance of the anti reflective film (b) Reflectance of the anti reflective film (c) LIDT test of the anti reflective film


A 6-layer HfO2/SiO2 film system structure with a total thickness of 2180nm was designed using electron beam evaporation (EB) and ion assisted deposition (EB-IAD) techniques. By comparing the two processes, it was found that ion assisted technology significantly optimized the quality of the film layer, and the EB-IAD process prepared the film layer with higher crystallinity, lower surface roughness, and significantly reduced water absorption. The laser damage threshold is increased, and the LIDT of EB-IAD anti reflective film under 2.097 μ m laser reaches 91.91 J/cm2, while the EB process only achieves 11.25 J/cm;. After analyzing the damage morphology, it was found that the EB anti reflective film was affected by the nanosecond thermal effect, resulting in larger and deeper damage points. The EB-IAD film layer was mainly ablated by plasma, with a smaller damage area and stronger interfacial adhesion. This study provides theoretical basis and process reference for the design and preparation of mid infrared anti reflective films. The research results are expected to be applied to the mid infrared nonlinear crystal ZnGeP2 and more mid infrared laser systems besides ZnGeP2 crystals, such as high-power laser processing, infrared imaging, optical communication and other fields, promoting the development of related industries.

Source: opticsky

相關推薦
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    查看翻譯
  • BLM Launches Tunable 4kW Five Axis Laser Cutting System

    Recently, the Italian laser pipe processing group BLM Group announced the launch of an LT-Free five axis laser cutting system that can be used for laser cutting and processing of any three-dimensional metal profile, including bending forming, hydraulic forming, extrusion forming, deep drawing forming, flat or stamped forming of pipe fittings or plates.This five axis laser cutting system can provid...

    2023-10-11
    查看翻譯
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    查看翻譯
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    查看翻譯
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    查看翻譯