繁体中文

Hyperspectral imaging technology: a comprehensive guide from principles to applications

376
2024-04-16 17:35:15
查看翻譯

Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.

Introduction to hyperspectral imaging
Hyperspectral imaging is a technique that utilizes spectral information to obtain the spectrum of each pixel in an image. Compared to traditional imaging systems, hyperspectral imaging can provide more detailed information on object and surface features. By analyzing the unique spectral characteristics of objects and materials, it is possible to identify and quantify them.

Spectral imaging systems can capture electromagnetic spectra ranging from visible light to infrared, providing rich spectral data. This technology is widely used in fields such as food quality and safety, waste classification and recycling, and drug production control.

2. Working principle
Hyperspectral imaging utilizes an imaging spectrometer (also known as a hyperspectral camera) to collect light from a scene and decompose it into various wavelengths or spectral bands. Through this method, a two-dimensional image of the scene can be obtained and the spectral information of each pixel can be recorded. In the final hyperspectral image, each pixel corresponds to a unique spectrum, similar to a fingerprint.

This unique spectrum can be used to identify and quantify objects and materials in the scene. Due to the different reactions of different materials to light, their spectral characteristics are also different. Therefore, object recognition and classification can be achieved through spectra.

3. Information provided
The hyperspectral imaging system provides rich spatial and spectral information, which can be used to solve the problems of "what" and "where". Spectral information allows for recognition and classification of objects, while spatial information provides data on object distribution and regional separation.

Compared to traditional RGB cameras, hyperspectral imaging can provide more detailed and rich information. By analyzing thousands or even hundreds of thousands of spectra, large-scale hyperspectral data cubes containing position, wavelength, and time related information can be obtained, enabling detailed characterization of objects.

4. Application field
Hyperspectral imaging technology has a wide range of applications in various fields:
-Environmental monitoring: used to monitor land use, vegetation health, and water quality changes, as well as detect early signs of ecological degradation.
-Mineral exploration: used to create mineral deposit maps, detect mineral composition and grade.
-Quality control: can be used for non-destructive testing and grading of food, as well as detection of pollutants and defects in industrial products.
-Waste management: can be used to separate various materials and increase the value of recycled materials.
-Agriculture: used to evaluate crop health and yield, monitor soil moisture and nutrient content.
-Military surveillance: used to detect and identify hazardous materials.

epilogue
Hyperspectral imaging technology, as a powerful tool, plays an important role in scientific research, industrial production, and environmental monitoring. With the continuous advancement of technology and the expansion of application scenarios, it is believed that hyperspectral imaging will play an increasingly important role in the future and make greater contributions to the development of human society.

Source: Sohu

相關推薦
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    查看翻譯
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    查看翻譯
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    查看翻譯
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    查看翻譯
  • Redefining the Future of Sensing: In depth Study of Novel Plasma Waveguide Structures

    Imagine in such a world, the detection of trace substances is not only fast, but also incredibly accurate, indicating a new era of technological progress in health, safety, and environmental monitoring. Due to pioneering research on plasma waveguide structures, this vision is becoming increasingly realistic, aimed at enhancing refractive index sensing and spectral filtering. This innovative method...

    2024-03-04
    查看翻譯