繁体中文

Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

405
2025-03-24 17:17:38
查看翻譯


Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (TG-FROG) to achieve complete characterization of complex high-power laser pulses in a single shot, and revealed the dynamic evolution law of ultra short pulses during nonlinear frequency conversion. The related research results were published in Optics Express under the title "Single shot complete characterization of synthesized laser pulses and non-linear frequency conversion process".

The combination of laser fields (pulse combinations with different polarizations, center wavelengths, or pulse widths) has important applications in fields such as ultrafast spectroscopy and high-order harmonic generation, but its precise measurement faces multiple challenges. Traditional methods are limited by polarization sensitivity, insufficient measurement bandwidth, or the need for multiple measurements, making it difficult to meet the real-time diagnostic requirements of high-power, low repetition rate laser systems. In addition, the dynamic characteristics of the nonlinear frequency transformation process of complex pulses lack effective observation methods, which restricts the optimization and application expansion of laser systems.

In response to the above challenges, the research team based on improved TG-FROG measurement technology, designed a self referencing and reflective structure with a wideband imaging spectrometer, to achieve single measurement support for at least 460nm spectral range, with a time resolution of 5.81 fs and spectral resolution better than 0.13 nm. The synchronous observation of waveform and spectral evolution of fundamental frequency pulses and second harmonic pulses during nonlinear frequency conversion has been achieved, revealing complex modulation effects such as spectral broadening, redshift, and time-domain multi peak structure under high-energy injection. And successfully measured the dual color pulse with spectral time-domain separation generated by the cascaded second harmonic process, and analyzed its time delay (208.4 fs) and relative phase (0.29 rad), breaking through the phase ambiguity limitation. This method not only provides a good measurement method for optimizing the waveform and contrast of ultra wideband laser pulses, but also provides a powerful diagnostic tool for complex nonlinear optical physical processes.

Figure 1 (a) Single broadband TG FROG device; (b) The process of broadband nonlinear frequency transformation and the experimental optical path diagram of dual pulse measurement.

Figure 2 TG-FROG synchronous measurement results of fundamental frequency pulse and second harmonic pulse during SHG process under high injection energy

Source: opticsky

相關推薦
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    查看翻譯
  • The construction of China's first attosecond laser device in Dongguan provides strong impetus for breakthroughs in multiple major fundamental scientific issues such as quantum computing

    On October 3rd, the 2023 Nobel Prize in Physics was announced, recognizing scientists who have studied attosecond physics, marking the beginning of the attosecond era for humanity.At present, China's first attosecond laser device, the "Advanced attosecond Laser Facility", is being prepared and built in Dongguan, Guangdong, providing strong impetus for breakthroughs in multiple major basic scientif...

    2023-10-07
    查看翻譯
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    查看翻譯
  • Jenoptik invests 100 million euros to open new factory

    On May 30th, Jenoptik announced on its official WeChat account that after approximately two and a half years of construction, its new factory in Dresden, Germany, with an investment of nearly 100 million euros, has officially opened. This is the largest single investment project in Jenoptik's recent history.Jenoptik President and CEO Dr. Stefan Traeger stated that this new factory will make Dresde...

    06-05
    查看翻譯
  • The influence of laser beam drift on SLM thin-walled TC11 specimens at high scanning speed

    AbstractDue to the width of the laser melt pool and the sintering effect on the surrounding powder, the experimental size of the selective laser melting (SLM) sample will be larger than the design size, which will greatly affect the dimensional accuracy and surface quality of the thin-walled sample. In order to obtain SLM thin-walled TC11 specimens with precise dimensions, an orthogonal experiment...

    02-24
    查看翻譯