繁体中文

Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

201
2024-05-10 15:55:13
查看翻譯

JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant leap in past achievements in computer simulation or photons.



Applying optical tweezers to large-scale Hubbard systems
Researchers used cutting-edge technology, including optical tweezers and advanced cooling methods, to prepare specific patterns of up to 180 strontium atoms in a lattice of 1000 points. By minimizing the motion of atoms and ensuring they remain in the lowest energy state, the team reduced noise and decoherence, which are common challenges in quantum experiments.

Kaufman said, "Optical tweezers have achieved groundbreaking experiments in multibody physics, typically used to study interacting atoms, where atoms are fixed in space and interact over long distances." "However, when particles can both interact and tunnel, and quantum mechanics spreads in space, a fundamental class of multibody problems arises - the so-called 'Hubbard' system. In the early stages of establishing this experiment, our goal was to apply this tweezer paradigm to large-scale Hubbard systems - this article marks the first realization of this vision."

Confirm high fidelity through scaling testing
Due to the complexity of boson sampling, it is not feasible to directly verify the correct sampling task of 180 atomic experiments. To overcome this issue, researchers sampled atoms of different scales and compared the measurement results with simulations of reasonable error models involving intermediate scale experiments.

"We tested with two atoms and we have a good understanding of what is happening. Then, at an intermediate scale where we can still simulate things, we can compare our measurement results with simulations involving reasonable error models in our experiments. On a large scale, we can continuously change the difficulty of the sampling task by controlling the distinguishability of atoms and confirm that there are no major issues," said Aaron Young, the first author and former JILA graduate student.

This work demonstrates the high-quality and programmable preparation, evolution, and detection of atoms in the lattice, which can be applied to atomic interactions, opening up new methods for simulating and studying the behavior of real and poorly known quantum materials.

Source: Laser Net

相關推薦
  • Medical implant manufacturers have announced the launch of ultra-short pulse lasers for cutting applications

    Norman Noble, the world's leading contract manufacturer of next-generation medical implants, today announced the launch of the Noble STEALTH HP, an ultrashort pulse laser for the fabrication of innovative medical devices and implants.It is reported that the laser is mainly equipped with a high-power laser cutting system, which can achieve high-quality cutting results without heat affected zone (HA...

    2023-09-12
    查看翻譯
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    查看翻譯
  • Researchers have developed the world's smallest silicon chip quantum photodetector

    Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microch...

    2024-05-21
    查看翻譯
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    查看翻譯
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    查看翻譯