繁体中文

Photon chips help drones fly unobstructed in weak signal areas

935
2023-10-28 09:58:39
查看翻譯

With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.

Using this quantum technology, scientists aim to provide the same sensitivity level as large optical gyroscopes on small handheld photonic chips, which may alter the navigation of drones.

Jaime Cardenas, an associate professor at the Institute of Optics, has received a new National Science Foundation grant to develop this chip by 2026.

Cardenas stated that the fiber optic gyroscopes currently used on the most advanced drones include several kilometers of fiber optic spools or have limited dynamic range.

At present, the sensitivity and stability of gyroscopes must be fundamentally balanced between their size and weight. As unmanned aerial vehicles, drones, and satellites become smaller and more common, the demand for ultra compact navigation level gyroscopes will become crucial. The most advanced micro gyroscopes are compact and sturdy, but their performance is insufficient, which hinders their application in navigation.

According to Cardenas, weak amplification has more advantages than traditional methods because it can enhance the interference measurement signal without the cost of amplifying several forms of technical noise. But the previous weak amplification demonstration required complex laboratory settings and precise calibration; Cardenas is committed to achieving weak amplification on micro photonic chips using high-quality factor ring resonators.

Cardenas' collaborators in this project include physicist Andrew Jordan, who was a former faculty member at the University of Rochester and currently works at Chapman University. Cardenas stated that he will also collaborate with the David T. Kearns Leadership and Diversity Center at the university to expand the participation of underrepresented groups and stimulate their desire for STEM careers through research experience with high school students in the Rochester City school district.

Source: OFweek

相關推薦
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    查看翻譯
  • A German 3D printing company applies for bankruptcy

    On February 5th, it was reported that Q BIG 3D GmbH filed for bankruptcy on January 31, 2025. The Ludwigsburg District Court has ordered temporary bankruptcy administration and appointed Mr. Ilkin Bananyarli of PLUTA Rechtsanwarts GmbH as the temporary bankruptcy administrator.The company was founded in 2019 and focuses on large format particle 3D printing systems, providing additive manufacturing...

    02-06
    查看翻譯
  • Progress makes laser based imaging simpler and more three-dimensional

    a. b. Schematic diagram of PACTER system calibration and imaging program. BT, beam trap; DAQ, data acquisition unit; HWP, half wave plate; PBS, polarization beam splitter; ER, traverse the relay. The difference between the two modes is highlighted by a black dashed box. c. Schematic diagram of a single component ultrasonic transducer manufactured on ER. d. The ultrasound transducer detected 1D P...

    2023-12-05
    查看翻譯
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

    The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is re...

    2024-10-14
    查看翻譯
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    查看翻譯