繁体中文

LIS Technologies closes $11.88 million seed round of financing

444
2024-08-22 15:24:26
查看翻譯

On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing.

 



According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a number of investors including 28 Ventures Fund, a leading U.S. advanced nuclear technology company, and several active investors in the nuclear technology sector.

The financing was originally set at $1.3 million, but given the overwhelming response and high level of market acceptance of LIST's Laser Isotope Separation Technology (L.I.S.T.), a significant expansion was ultimately realized, underscoring investors' unwavering confidence in the company's vision and growth potential.

The funding will directly assist the Company in relaunching and accelerating the development and application of its proprietary, patented advanced laser enrichment technology. This technology previously demonstrated its potential in the 1980s and early 1990s and was rated Technology Maturity Level (TRL) 4 by the National Nuclear Security Administration (NNSA), signifying a solid foundation of technological maturity.

LIST plans to utilize the additional funding to build a new R&D facility in Oak Ridge, Tennessee to advance physical testing and demonstration programs, and plans to recruit additional top scientists and engineers to join its elite team to drive technology innovation.

The company's CRISLA technology has a wide range of applications, not limited to the enrichment of uranium for nuclear fuel, but also involves the production of stable isotopes in fields such as medicine and scientific research, as well as cutting-edge applications in quantum computing, particularly semiconductor manufacturing.

The technology is capable of producing Low Enriched Uranium (LEU) and Highly Enriched Uranium (HALEU) in a single or dual-stage process, respectively, through the high selectivity of laser light. Its high throughput, high duty cycle, and simplified process flow herald lower capital and operating costs compared to conventional technologies, demonstrating a strong market competitiveness.

We are honored that LIST and its vision to modernize the U.S. nuclear energy industry and its fuel supply chain is receiving such strong support,” said Christo Liebenberg, CEO of LIS Technologies Inc. This marks an important milestone not only for our company, but also a critical step in a new chapter for the U.S. nuclear energy industry. We are confident that the renaissance of L.I.S.T. technology will lead the world into a new era of more cost-effective uranium enrichment, ensure a stable domestic supply of LEU and HALEU fuel, and lay a solid foundation for a thriving and innovative nuclear energy industry. The investment support from the advanced nuclear technology sector is undoubtedly the best proof of our relentless pursuit and strong commitment.”

About LIS Technologies

LIS Technologies Inc. is a U.S.-based company specializing in the development of advanced laser technologies that utilize infrared wavelengths to precisely excite molecules of targeted isotopes for efficient separation. As a leader in the field of laser uranium enrichment, LIST's L.I.S.T. technology not only outperforms traditional methods (e.g., gaseous diffusion, centrifuges, etc.) in terms of energy efficiency, but also demonstrates significant advantages in terms of capital and operating costs. The technology is widely used in LEU production, HALEU supply for SMRs and micro reactors, stable isotope preparation for medical and scientific research, and semiconductor innovation for quantum computing. The company brings together the world's leading nuclear technology experts and works closely with industry leaders, governments and the private nuclear sector to advance the future of nuclear technology.

Source: OFweek

相關推薦
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    查看翻譯
  • NUBURU announces its latest strategic blueprint

    Following the announcement of the immediate termination of a $2 million stock exchange agreement and its partnership with HUMBL, high-power blue laser light source manufacturer NUBURU has once again announced its latest strategic blueprint. Through specific understanding, after this strategic update, NUBURU's business model will cover two collaborative key business lines, with a focus on defense a...

    04-17
    查看翻譯
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    查看翻譯
  • Underwater laser cutting has been achieved with several advantages over common technologies such as saws, automatic wire saws and plasma cutting machines

    Due to the growing demand for renewable energy, the need for modern technologies to dismantle existing underwater infrastructure is also growing.For example, in order to boost the power of an offshore wind farm to a higher level, the existing old steel frame, which may be below sea level, must first be removed so that engineers can rebuild the steel frame for higher power.In laboratory tests, rese...

    2023-09-13
    查看翻譯
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    查看翻譯