繁体中文

Breakthrough development of terahertz quantum cascade lasers

188
2024-01-04 14:00:18
查看翻譯

With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.

The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is specifically aimed at addressing the long-term challenges of reflectivity design and broadband narrow beam transmission in terahertz QCL. The outstanding feature of this external coupler is its ability to fine tune the mirror reflectivity of the waveguide. This is achieved by using efficient reverse design algorithms to shape the end face.

The terahertz laser radiation generated by the system is combined with broadband patch array antennas. The combination of these components leads to the convenience of surface emission. The entire system, including all its components, has been optimized to support octave frequency crossing in the range of 2-4 THz.

These advances have been put into practice through demonstrations of broadband surface emitting terahertz quantum cascade laser frequency combs. This special laser frequency comb has already demonstrated impressive performance indicators. It can output a power of 13 milliwatts and has an optical bandwidth of over 800 gigahertz and a single lobe far-field mode. It still maintains a beam divergence of less than 20 degrees in both horizontal and vertical dimensions.

In addition, this work plays a crucial role in the empirical observation of terahertz waves generated in a cascaded manner under non collinear phase matching conditions in terahertz parameter generators. Researchers effectively induce cascades using high-power seed beams to detect new high-order terahertz waves near the end face.

This development is a major step forward in the fields of terahertz wave sources, parameter detection, and amplification. It not only enhances the output power of terahertz sources, but also provides a way for theoretical exploration of parameterized TH wave generation.

This breakthrough represents significant progress in the field of laser technology and may pave the way for new possibilities for terahertz applications. It reflects the intricate interaction between technology and humanity, further blurring boundaries and expanding our understanding of possibilities.

Source: Laser Net

相關推薦
  • Reverse Modeling of 3D Scanning Reading in Hong Kong: Production Innovation in the Digital Era

    In the wave of the digital age, Hong Kong, as an international business center, constantly explores the application of new technologies in the manufacturing industry. Among them, 3D scanning and reverse modeling technology is emerging, bringing a new production innovation to the manufacturing industry. This article will explore the application of 3D scanning and reverse modeling in Hong Kong, as w...

    2024-03-30
    查看翻譯
  • The team led by Gao Chunqing and Fu Shiyao from Beijing University of Technology has made significant breakthroughs in the study of photon angular momentum regulation

    Recently, a team led by Gao Chunqing and Fu Shiyao from the School of Optoelectronics at Beijing University of Technology combined optical spatial coordinate transformation with photon spin Hall effect to construct a photon angular momentum filter for the first time internationally, achieving on-demand regulation of photon spin angular momentum and orbital angular momentum.The related achievements...

    2023-10-20
    查看翻譯
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    查看翻譯
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    查看翻譯
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    查看翻譯