繁体中文

Breakthrough development of terahertz quantum cascade lasers

468
2024-01-04 14:00:18
查看翻譯

With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.

The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is specifically aimed at addressing the long-term challenges of reflectivity design and broadband narrow beam transmission in terahertz QCL. The outstanding feature of this external coupler is its ability to fine tune the mirror reflectivity of the waveguide. This is achieved by using efficient reverse design algorithms to shape the end face.

The terahertz laser radiation generated by the system is combined with broadband patch array antennas. The combination of these components leads to the convenience of surface emission. The entire system, including all its components, has been optimized to support octave frequency crossing in the range of 2-4 THz.

These advances have been put into practice through demonstrations of broadband surface emitting terahertz quantum cascade laser frequency combs. This special laser frequency comb has already demonstrated impressive performance indicators. It can output a power of 13 milliwatts and has an optical bandwidth of over 800 gigahertz and a single lobe far-field mode. It still maintains a beam divergence of less than 20 degrees in both horizontal and vertical dimensions.

In addition, this work plays a crucial role in the empirical observation of terahertz waves generated in a cascaded manner under non collinear phase matching conditions in terahertz parameter generators. Researchers effectively induce cascades using high-power seed beams to detect new high-order terahertz waves near the end face.

This development is a major step forward in the fields of terahertz wave sources, parameter detection, and amplification. It not only enhances the output power of terahertz sources, but also provides a way for theoretical exploration of parameterized TH wave generation.

This breakthrough represents significant progress in the field of laser technology and may pave the way for new possibilities for terahertz applications. It reflects the intricate interaction between technology and humanity, further blurring boundaries and expanding our understanding of possibilities.

Source: Laser Net

相關推薦
  • Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

    Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.This lithography equipment weighing 150 tons has been ...

    2024-04-22
    查看翻譯
  • The largest ultra fast laser production base in the northwest has been completed and put into operation

    As a representative enterprise in the field of ultrafast lasers, Zhuolai Laser has always performed outstandingly in the market, not only possessing dual technologies of "ultrafast+ultra strong", but also covering a remarkable range of technical routes in China. In 2022, the company completed a financing of 200 million yuan.Recently, Zhuolai Laser announced to the public that its Xi'an subsidiary ...

    2024-04-28
    查看翻譯
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    查看翻譯
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    查看翻譯
  • The UK government plans £ 10.5 million to support laser wire feeding

    On the first day of the 2025 Paris Air Show, the UK government announced a £ 250 million investment to support sustainable aerospace programs, with £ 48.5 million earmarked for funding additive manufacturing projects led by Airbus and GKN Aerospace. Among them, £ 10.5 million will be injected into the GKN Integrated System Level Aerospace Structure Assembly (ISLAA) program, with the aim of utilizi...

    06-23
    查看翻譯