繁体中文

MIT research enables 3D printers to recognize new materials

373
2024-04-18 16:54:09
查看翻譯

According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.

Issues with 3D printing of plastics
3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.
Other more environmentally friendly options also exist and are still under development, but changing the printing material also requires adjusting the parameters of the 3D printer, which is a challenging process that requires changing up to 100 features, and most of them are done manually.

"Mathematical functions" for new parameters
A research team from the MIT Bits and Atoms Center, the National Institute of Standards and Technology, and the National Center for Scientific Research in Greece has developed a process that actually allows printing software to quickly identify the characteristics of new printing materials. It may have never been encountered before and many related parameters have been adjusted accordingly.

Researchers have improved the extruder of a 3D printer to measure material flow and force within 20 minutes, and then input these numbers into its "mathematical function" to generate new parameters that can be implemented in standard printing software.

The Success of Biobased Materials
Officials from the Massachusetts Institute of Technology say that this technology accounts for about half of the parameters that typically require human modification. Experiments on new materials (including materials from biological sources) have shown that this process can even successfully manufacture complex parts.

Reduce the impact of 3D printing on the environment
This method can achieve more recyclable printed products and limit the use of polymers from fossil fuels, ultimately reducing the overall environmental impact of additive manufacturing.

Source: Laser Net

相關推薦
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    查看翻譯
  • Marvel Fusion received an additional € 50 million in Series B funding

    Recently, Marvel Fusion, which focuses on developing laser fusion energy systems, announced that the company has received an additional € 50 million in Series B funding. This latest investment is provided by EQT Venture Capital and Siemens Energy, and is also the first investment of the European Innovation Council (EIC) fund in fusion energy. In addition to the 63 million euros investment announce...

    04-08
    查看翻譯
  • Gas reduction technology of fiber laser helps to improve the cutting quality of low-carbon steel

    The Mitsubishi GX-F Advanced series of artificial intelligence enabled fiber lasers now use patented gas and burr reduction technology to help improve cutting quality while reducing gas consumption when cutting low-carbon steel.Mitsubishi Laser's proprietary Agr Mix nozzle technology does not require an external mixing tank or high-pressure oxygen. The combination of low-pressure air and nitrogen ...

    2024-02-14
    查看翻譯
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    查看翻譯
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    查看翻譯