Tiếng Việt

Laser induced 2D material modification: from atomic scale to electronic scale

938
2024-02-23 14:44:13
Xem bản dịch

Background Introduction
Two dimensional materials have attracted widespread attention due to their atomic level thickness and unique properties, such as high binding energy, tunable bandgap, and new electronic degrees of freedom (valley electronics). They have many application prospects in fields such as microelectronics, nanophotonics, and nanoenergy. Various two-dimensional materials have their own advantages and disadvantages in terms of physical properties, and modifying two-dimensional materials can break through the limitations of their original properties in terms of application scope. Laser modification, as a non-contact processing technology, has the characteristics of high efficiency, high flexibility, and high spatiotemporal resolution, and is a powerful means of modifying two-dimensional materials.

Figure 1. Precise control of laser thinning of two-dimensional materials by monitoring thickness and/or self passivation

Quick News Highlights
Recently, Associate Professors Lin Linhan and Sun Hongbo from Tsinghua University published a review article on optical modification of two-dimensional materials from atomic to electronic scales in JPCC.

Figure 2. Laser assisted defect repair and exciton modulation
In the past decade, the interaction between light and two-dimensional materials has received much attention. The excitation of electrons under light can be utilized in optoelectronic and nanophotonic devices, and a profound understanding of the interactions between various light and two-dimensional materials enables researchers to change the geometric morphology, chemical composition, electronic structure, and even atomic structure of two-dimensional materials. This provides new strategies for on-demand manipulation of the optical, thermal, or electrical properties of two-dimensional materials and further expands their applications.

In the process of laser modification of two-dimensional materials, laser can directly excite electrons in the two-dimensional materials, change the electronic structure and even atomic structure of the two-dimensional materials, achieve photoconductivity control and photo induced ultrafast phase transition; It can also serve as an energy source for heat during the modification process, indirectly achieving the modification of two-dimensional materials through photothermal effects, achieving oxidation and sublimation etching of two-dimensional materials, photothermal phase transition, photothermal reduction of graphene oxide, etc; In laser-induced doping and some oxidation reactions, lasers can also assist two-dimensional materials in reacting with other substances to generate new materials with excellent performance. Focusing on graphene and transition metal chalcogenides (TMDs), the author reviewed the interactions between light and two-dimensional materials from different perspectives and discussed cutting-edge optical processing modification techniques to change the morphology and atomic structure of two-dimensional materials, and adjust their electrical and optical properties as needed; Outlined its basic mechanism, technological development, and applications, and introduced its views on future challenges and opportunities.

Source: Laser Manufacturing Network

Đề xuất liên quan
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    Xem bản dịch
  • The LiDAR SLAM navigation system uses laser sensors to realize real-time 3D mapping of the environment

    Robotic lawn mowers are becoming increasingly popular due to their convenience and ability to save time and effort. Although robotic lawnmowers have made significant progress over the years, many robots still require users to lay perimeter wires to define the mowing area and remove any obstructions from the lawn to ensure the mower doesn't get stuck or damaged.Well, that's not the case with the Ne...

    2023-09-11
    Xem bản dịch
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    Xem bản dịch
  • GF Machining Solutions will showcase the latest members of its laser tradition on EPHJ

    At the EPHJ exhibition, GF Machining Solutions will showcase its latest laser solutions for microfabrication and 3D surface texture processing. Inspired by 70 years of innovation in the machine tool industry and 15 years of mastery of laser technology, GF Machining Solutions' latest innovations enable manufacturers to take speed and accuracy to new levels - they can experience it firsthand at EP...

    2024-06-06
    Xem bản dịch
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Xem bản dịch