Tiếng Việt

Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

773
2025-03-24 17:17:38
Xem bản dịch


Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (TG-FROG) to achieve complete characterization of complex high-power laser pulses in a single shot, and revealed the dynamic evolution law of ultra short pulses during nonlinear frequency conversion. The related research results were published in Optics Express under the title "Single shot complete characterization of synthesized laser pulses and non-linear frequency conversion process".

The combination of laser fields (pulse combinations with different polarizations, center wavelengths, or pulse widths) has important applications in fields such as ultrafast spectroscopy and high-order harmonic generation, but its precise measurement faces multiple challenges. Traditional methods are limited by polarization sensitivity, insufficient measurement bandwidth, or the need for multiple measurements, making it difficult to meet the real-time diagnostic requirements of high-power, low repetition rate laser systems. In addition, the dynamic characteristics of the nonlinear frequency transformation process of complex pulses lack effective observation methods, which restricts the optimization and application expansion of laser systems.

In response to the above challenges, the research team based on improved TG-FROG measurement technology, designed a self referencing and reflective structure with a wideband imaging spectrometer, to achieve single measurement support for at least 460nm spectral range, with a time resolution of 5.81 fs and spectral resolution better than 0.13 nm. The synchronous observation of waveform and spectral evolution of fundamental frequency pulses and second harmonic pulses during nonlinear frequency conversion has been achieved, revealing complex modulation effects such as spectral broadening, redshift, and time-domain multi peak structure under high-energy injection. And successfully measured the dual color pulse with spectral time-domain separation generated by the cascaded second harmonic process, and analyzed its time delay (208.4 fs) and relative phase (0.29 rad), breaking through the phase ambiguity limitation. This method not only provides a good measurement method for optimizing the waveform and contrast of ultra wideband laser pulses, but also provides a powerful diagnostic tool for complex nonlinear optical physical processes.

Figure 1 (a) Single broadband TG FROG device; (b) The process of broadband nonlinear frequency transformation and the experimental optical path diagram of dual pulse measurement.

Figure 2 TG-FROG synchronous measurement results of fundamental frequency pulse and second harmonic pulse during SHG process under high injection energy

Source: opticsky

Đề xuất liên quan
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    Xem bản dịch
  • Innovative laser based rain enhancement project launched by UAEREP and DERC teams

    Recently, the UAE Rainfall Enhancement Scientific Research Program launched a groundbreaking project with Dr. Guillaume Matras and his team from the Directional Energy Research Center of the Institute of Technology Innovation, aiming to address the challenge of global water shortage through advanced technology. This collaboration marks an important milestone in the field of rainfall enhancement sc...

    2024-03-02
    Xem bản dịch
  • Researchers have discovered a new method to improve the resolution of laser processing

    Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.Their research results are published in the journal Optics Letters.Laser processing, like drilling and cutting, is crucial in industrie...

    2024-03-28
    Xem bản dịch
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    Xem bản dịch
  • A German 3D printing company applies for bankruptcy

    On February 5th, it was reported that Q BIG 3D GmbH filed for bankruptcy on January 31, 2025. The Ludwigsburg District Court has ordered temporary bankruptcy administration and appointed Mr. Ilkin Bananyarli of PLUTA Rechtsanwarts GmbH as the temporary bankruptcy administrator.The company was founded in 2019 and focuses on large format particle 3D printing systems, providing additive manufacturing...

    02-06
    Xem bản dịch