Tiếng Việt

Additive manufacturing of free-form optical devices for space use

861
2023-12-04 14:09:54
Xem bản dịch

A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.

The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is now possible due to the emergence of suitable additive manufacturing techniques.

Freeform surface optical devices, such as reflectors, can now be designed and additive manufactured to present complex shapes, provide a larger field of view in smaller packaging sizes, and withstand harsh space environments.

Innovation Launch, Automation, New Materials, Communications, and Hypersonic Center Pioneer is a $180 million program aimed at commercializing the project to build Australia's space capabilities.

Darin Lovett, Executive Director of iLAuNCH Trailblazer, stated, "This project showcases the full content of iLAuNCH, using the 2021 Defense Innovation Partnership concept demonstrator, which investigates the feasibility of free-form optical components for small satellites and uses Australian technology to put them into production for real-world applications.".

An important requirement in the development of free-form optical devices is to be able to process additive manufactured parts to the extent that mirror finish can be developed.

Dr. Kamil Zuber, Senior Researcher at the University of South Australia, said, "We are developing optical grade finishes for additive substrates for satellite optical components.".

"We will also demonstrate the coating system for reflective optical components used in space applications."
Our project partners located in Adelaide, advanced manufacturer VPG Innovation, and mirror and camera system expert SMR Australia, have long-term experience in traditional and additive manufacturing, as well as product development in the automotive and defense sectors.

The additive manufacturing, molding, and vacuum coating capabilities of our partners make commercial production of developed products possible.
Dr. Bastian Stoehr, Senior Design Engineer at SMR Australia, stated that the company will contribute its advanced injection molding and coating expertise to the project.

Dr. Stoehr said, "More than a decade of collaboration has shown that the synergy between UniSA's research and Motherson's manufacturing capabilities brings greater results than the sum of its parts.".

The addition of St ä rke AMG's innovation focus will ensure that this joint venture not only drives South Australia to play a crucial role in space technology, but also reflects the true essence of cooperation.

Our joint efforts will redefine the possibilities of additive manufacturing and free-form surface optics, with the potential to have a transformative impact on the future of space exploration. When we contribute our efforts, we are not only driving technological progress, but also shaping a future that makes South Australia synonymous with cutting-edge value-added manufacturing.

Al Jawhari, co-founder and CEO of St ä rke AMG, stated that additive manufacturing has a transformative power and may actively reshape the manufacturing industry.
We are proud to lead these efforts in providing innovative satellite optical design and manufacturing for Earth observation and other critical applications.
We are working together to create a future where free-form optics will redefine the possibilities of space missions.

Source: Laser Net

Đề xuất liên quan
  • Han's Laser senior management resigns

    Just now, Han's Laser Technology Industry Group Co., Ltd. announced the resignation of senior management personnel. The board of directors recently received a written resignation report from Mr. Zhao Guanghui, the deputy director of the company's management and decision-making committee. Mr. Zhao Guanghui has applied to resign from his position as deputy director of the company's management and de...

    06-09
    Xem bản dịch
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Xem bản dịch
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    Xem bản dịch
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    Xem bản dịch
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Xem bản dịch