Tiếng Việt

Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

752
2024-07-12 11:14:40
Xem bản dịch

Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related research results, titled "Superconducting single photon detector with speed of 5 GHz and photon number resolution of 61", were published online in Photonics Research and were selected for editorial recommendation.

In recent years, superconducting nanowire single photon detectors have been widely used in quantum communication, optical quantum computing, and quantum mechanics principle verification due to their high efficiency, low dark count rate, and excellent time resolution.

The team has developed a highly efficient, ultra high speed, and high photon resolution superconducting detector integrated system. To ensure the portability and reliability of the detection system, the project has built a cooling integrated system based on a GM small refrigeration mechanism. The system supports 64 electrical channels and has a minimum operating temperature of 2.3 K. The detector chip integrates 64 superconducting nanowires on a distributed Bragg reflector, achieving both improved photon absorption and detection speed. After characterization, the yield of nanowire preparation was 61/64, and the system detection efficiency reached 90% at a wavelength of 1550 nm. The maximum counting rate was 5.2 GHz, and the counting rate was 1.7 GHz when the detection efficiency decreased by 3dB. The photon number resolution was 61. The performance indicators of this detection system are expected to support applications such as deep space laser communication, high-speed quantum communication, and basic quantum optical experiments.

The research work was supported by the Science and Technology Innovation 2030 Major Project, the National Natural Science Foundation of China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the "Sailing Plan" of Shanghai.


Device structure (a), superconducting nanowires (b), device packaging (c), and refrigeration system (d)

Source: Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences

Đề xuất liên quan
  • Optical Capture of Optical Nanoparticles: Fundamentals and Applications

    A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.Recently, the success of optical tweezers in separating and manipulating individual...

    2023-11-25
    Xem bản dịch
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    Xem bản dịch
  • Preparation of all silicon dielectric metasurface by femtosecond laser modification combined with wet etching, achieving ideal compatibility with complementary metal oxide semiconductor technology

    The fully dielectric element surface has the characteristics of low material loss and strong field localization, making it very suitable for manipulating electromagnetic waves at the nanoscale. Especially the surface of all silicon dielectric elements can achieve ideal compatibility with complementary metal oxide semiconductor technology, making it an ideal choice for large-scale monolithic integr...

    2023-10-23
    Xem bản dịch
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    Xem bản dịch
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    Xem bản dịch