Tiếng Việt

XLight raises $40 million in financing to develop new EUV light sources

213
2025-07-23 10:48:24
Xem bản dịch

xLight, a US startup aiming to commercialize particle accelerator driven free electron lasers (FELs) for use in semiconductor production, says it has raised $40 million in a series B round of venture funding.

The Palo Alto, California, firm said that the support would enable it to develop a prototype next-generation light source capable of emitting at extreme ultraviolet (EUV) wavelengths that are currently used to produce the most advanced semiconductor devices. That prototype is expected to be operational in 2028.

 


xLight's executive team


While the Dutch equipment company ASML has cornered the market with its EUV lithography systems based around complex plasma sources produced using a combination of high-power carbon dioxide and other lasers, xLight’s approach is fundamentally different.

“We have designed – and are now building – the world’s most powerful FEL lasers to serve as a new light source for advanced EUV lithography,” it claims. “Our new source will replace the current laser-produced plasma (LPP) source, which is nearing its physical limits.”

Transformational source
xLight suggests that its FEL light source would be able to produce four times more EUV power than current LPP systems, potentially improving productivity and yield in future semiconductor wafer fabrication facilities.

The approach could also be used to provide EUV light to as many as 20 of ASML’s wafer patterning systems from a single source, in contrast to the current generation of EUV lithography systems, which each require their own laser-driven source.

The other key advantage is that the FEL approach would be able to shift to even shorter wavelengths of light than the 13.5 nm photons produced by today’s LPP systems.

Nicholas Kelez, currently both CEO and CTO at xLight, was previously chief engineer for the Linac Coherent Light Source (LCLS), a three-mile-long x-ray free electron facility for ultrafast science at Stanford's SLAC National Lab.

He said: “xLight is on a mission to build a transformational new light source for semiconductor manufacturing that addresses the key challenges facing the industry today - cost, capabilities, and capacity. This round will equip the company with the capital needed to complete detailed design and kickstart construction of our full-scale prototype.

“Advanced semiconductor manufacturing is approaching a key inflection point - together with our partners across the National Lab and semiconductor ecosystem, and with the support of our investors, we will commercialize free electron lasers and help reclaim American leadership in semiconductor manufacturing.”

ASML connection
FELs use electrons initially produced by a particle accelerator, which are then passed through magnetic “undulators” to generate high-intensity beams of coherent light.

“Our system’s programmable light characteristics will enable the shorter wavelengths of light, which will enable the extension of Moore’s law for decades,” claims xLight, adding that it has already established a working relationship with “technical leaders” at ASML.

That connection may be thanks to the presence of former Intel CEO Pat Gelsinger, who is now both executive chairman of the xLight board and a general partner at venture firm Playground Global, which led the series B investment and has also invested in co-packaged optics developer Ayar Labs.

“xLight represents a once-in-a-generation opportunity to restore American leadership in one of the most critical technologies underpinning the semiconductor industry,” said Gelsinger in a statement announcing the funding.

“By delivering an energy‑efficient EUV laser with tenfold improvements over existing technologies, xLight has the potential to drive the next era of Moore’s law - keeping chip scaling alive, accelerating fab productivity, and anchoring this foundational capability in the US supply chain.”

While the current EUV source technology is owned by ASML, it was originally developed in the US by the company Cymer, which is based near San Diego and originally specialized in excimer lasers for lithography before advancing EUV sources. It was acquired by ASML in 2013, for just under €2 billion.

Source: optics.org

Đề xuất liên quan
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    Xem bản dịch
  • BenQ Launches V5000i 4K RGB Laser TV Projector

    Display solution brand BenQ recently launched the 4K RGB laser TV projector V5000i.The V5000i focuses on providing the pinnacle of innovation, unparalleled color accuracy, and excellent audio quality, elevating the home theater world to unprecedented heights. It is the perfect replacement for large screen televisions, particularly suitable for well lit spaces such as spacious living areas, "the co...

    2023-10-10
    Xem bản dịch
  • BYD and Huagong Technology deepen strategic cooperation and exchange

    Recently, BYD Semiconductor Division held discussions and exchanges with Huagong Technology High Tech Company and Laser Company, opening a new chapter of strategic cooperation.Chen Gang, General Manager of BYD Semiconductor Division, Nie Bo, Party Committee Member and General Manager of Huagong High Tech, Wang Jiangang, Party Committee Member, Deputy General Manager of Huagong Laser, and General M...

    2024-12-11
    Xem bản dịch
  • Single photon avalanche diode detector enables 3D quantum ghost imaging

    A team of researchers at the Fraunhofer Institute for Optoelectronics, Systems Technology and Image Development and Karlsruhe Institute of Technology are using single-photon avalanche diode (SPAD) arrays to achieve three-dimensional (3D) quantum ghost imaging.The new method, called "asynchronous detection," produces the lowest photon dose of any measurement and can be used to image light-sensitive...

    2023-09-06
    Xem bản dịch
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    Xem bản dịch