Tiếng Việt

Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

678
2024-07-10 14:33:18
Xem bản dịch

Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion of Aluminum Phosphate Glasses".

Alkaline aluminum phosphate glass has important applications in the solidification of nuclear waste glass and other fields. Among them, chemical stability is crucial for its application. To gain a deeper understanding of the chemical stability of glass, it is necessary to understand its chemical corrosion mechanism. The study of glass corrosion mechanisms has a long history, but there are still many controversies. Previous research has mainly focused on borosilicate glass, while there has been less research on the corrosion mechanism of phosphate glass.

In this study, researchers conducted atomic scale analysis of the structure of alkali aluminum phosphate glass before and after corrosion using various advanced nuclear magnetic resonance techniques, and found that there were two different dissolution modes of the Q1 and Q0 groups in the glass in aqueous solution. This confirms that the crystal layer on the surface of phosphate glass originates from the dissolution of glass components and subsequent deposition on the glass surface. Revealed the dissolution mechanism of alkaline aluminum phosphate glass in aqueous solution and the formation mechanism of surface crystal layer. The research results deepen our understanding of the chemical stability mechanism of alkaline aluminum phosphate glass.

(a) The two dissolution modes of glass. (b) 27Al {27Al} 2D WURST 2Q-1Q spectrum of corroded glass

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Đề xuất liên quan
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    Xem bản dịch
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    Xem bản dịch
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    Xem bản dịch
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    Xem bản dịch
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    Xem bản dịch