Tiếng Việt

Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

193
2024-07-10 14:33:18
Xem bản dịch

Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion of Aluminum Phosphate Glasses".

Alkaline aluminum phosphate glass has important applications in the solidification of nuclear waste glass and other fields. Among them, chemical stability is crucial for its application. To gain a deeper understanding of the chemical stability of glass, it is necessary to understand its chemical corrosion mechanism. The study of glass corrosion mechanisms has a long history, but there are still many controversies. Previous research has mainly focused on borosilicate glass, while there has been less research on the corrosion mechanism of phosphate glass.

In this study, researchers conducted atomic scale analysis of the structure of alkali aluminum phosphate glass before and after corrosion using various advanced nuclear magnetic resonance techniques, and found that there were two different dissolution modes of the Q1 and Q0 groups in the glass in aqueous solution. This confirms that the crystal layer on the surface of phosphate glass originates from the dissolution of glass components and subsequent deposition on the glass surface. Revealed the dissolution mechanism of alkaline aluminum phosphate glass in aqueous solution and the formation mechanism of surface crystal layer. The research results deepen our understanding of the chemical stability mechanism of alkaline aluminum phosphate glass.

(a) The two dissolution modes of glass. (b) 27Al {27Al} 2D WURST 2Q-1Q spectrum of corroded glass

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Đề xuất liên quan
  • Tongkuai and KDPOF launch their first 980 nm multi gigabit automotive interconnection system

    Tongkuai Optoelectronic Devices, a global leader in vertical cavity laser emitters (VCSEL) and laser diodes (PD) solutions based in Germany, and a Spanish expert in high-speed optical network solutions, KDPOF, showcased the first 980 nm multi gigabit interconnect system for automotive systems at last week's ECOC.Both companies are committed to achieving the most advanced optical data communication...

    2023-10-17
    Xem bản dịch
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    Xem bản dịch
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    Xem bản dịch
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    Xem bản dịch
  • Northeastern University of Japan: Breakthrough Laser Technology for Nanoscale Laser Processing

    In the fields of optics and micro/nano processing, precise manipulation of lasers to meet the growing demand for miniaturization is an important challenge in driving the development of modern electronic and biomedical equipment. Recently, researchers from Tohoku University in Japan successfully demonstrated the use of interference technology to enhance the longitudinal electric field of radially p...

    2024-04-12
    Xem bản dịch