Tiếng Việt

The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

210
2024-07-01 14:11:26
Xem bản dịch

According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress.

 


Image source: Nature website
Titanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they have not been widely applied in the real world. Because this type of laser is usually large in size and expensive, costing hundreds of thousands of dollars per unit, and requiring other high-power equipment (priced at approximately $30000 per unit) to maintain operation.

To solve this problem, researchers first laid a large layer of titanium sapphire on the silica platform; Grind, etch, and polish the titanium sapphire into an extremely thin layer, only a few hundred nanometers thick; Then, design a vortex composed of tiny ridges on the thin layer. These ridges are like fiber optic cables, guiding light to circulate continuously and gradually increasing in intensity. This mode is called a waveguide. Compared with other titanium sapphire lasers, this prototype has reduced its size by 4 orders of magnitude (equivalent to one thousandth of the original) and reduced its cost by 3 orders of magnitude (equivalent to one thousandth of the original).

The remaining part is a microscale heater that can heat the light passing through the waveguide, allowing researchers to change the wavelength of the emitted light and adjust the wavelength range to between 700-1000 nanometers, from red light to infrared light.

In quantum physics, this new laser can significantly reduce the scale of state-of-the-art quantum computers; In the field of neuroscience, it can be applied in optogenetics, allowing scientists to control neurons by guiding light inside the brain through relatively large optical fibers; In ophthalmology, it may be combined with chirped pulse amplification technology in laser surgery to achieve new applications, or provide cheaper and more compact optical coherence tomography technology to evaluate retinal health.

Currently, constantly updated technology allows many laboratories to have ultra small lasers on a single chip, rather than a large and expensive laser. Small size lasers actually help improve efficiency - mathematically speaking, intensity is equal to power divided by area. Therefore, maintaining the same power as large lasers but reducing their concentrated area will result in a significant increase in intensity. More importantly, these compact and powerful lasers can quickly leave the laboratory and serve many different important applications.

Source: Chinese Academy of Sciences

Đề xuất liên quan
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    Xem bản dịch
  • Luxiner launches LXR platform to set new standards for industrial laser microfabrication

    Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.In today's rapidly changing industrial environment, laser technology plays a crucial ...

    2024-03-25
    Xem bản dịch
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    Xem bản dịch
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    Xem bản dịch
  • Industrial blue light laser developer Nuburu adds new director

    Not long ago, Nuburu, the developer of industrial blue light lasers, encountered a personnel change controversy. The departure of two senior executives from its board of directors resulted in a shortage of board members, and the originally scheduled special meeting for financing proposals was forced to be cancelled as a result. Recently, Nuburu announced two new director appointments that will tak...

    01-10
    Xem bản dịch