Tiếng Việt

The constantly developing world of all-weather laser satellite communication

388
2023-12-01 14:18:23
Xem bản dịch

Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.

 

In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstration of optical communication technology occurred in the mid-1990s. For example, the Japan Communications Research Laboratory successfully demonstrated laser communication experiments on the Japanese Engineering Test Satellite VI in 1994, which was the first dedicated laser communication satellite used to demonstrate air to ground laser communication.

The reason for this interest in laser communication is that the optical communication systems we know today have several advantages over the currently used UHF, SHF, and EHF systems, including higher data rates, better signal-to-noise ratios due to higher directionality, no interference, smaller antennas, lower overall power requirements, higher spectrum availability, and narrower beams that are more difficult to intercept and interfere with, And establishing a network does not require coordination from the International Telecommunication Union.

As mentioned earlier, capacity has a major advantage. The spectrum is several thousand times larger than the radio frequency spectrum; Therefore, when the radio frequency ranges from approximately 300 Hz to 300 GHz, the spectrum ranges from approximately 400 to 800 terahertz. The frequency is so high that so many zeros are required, to the extent that optical communication systems are measured in nanometers, with 800 nm being a typical wavelength/frequency. Although the implemented data rate depends on the signal encoding scheme, generally speaking, they may be a thousand times higher than the rate in RF communication.

For many years, satellite laser communication has been a characteristic of the Ministry of National Defense's planning. Those involved in the ill fated transformational satellite communication program believe that it is necessary to connect TSAT's orbital laser satellite network with the global fiber optic network of the defense information system network, which connects the orbital laser ring in space to the ground global laser ring of the global fiber optic network. The solution is to deploy the Earth station in geographically dispersed mild weather locations to avoid the dissipation effects of rain, drizzle, clouds, fog, and dust.

This solution illustrates the drawbacks of known optical communication systems today. These systems have higher pointing accuracy required by satellites, increasing complexity and availability risks, and are noise sources for solar receivers. As mentioned earlier, they are the main interference factors in rain, drizzle, clouds, fog, and dust.

Despite atmospheric barriers, some experiments and systems are using air to ground lasers. Since the beginning of 2022, NASA's laser communication relay demonstration has demonstrated bidirectional laser communication from geostationary orbit.

The drawing board, brass plate, prototype, and initial launch of giant satellite constellations have multiple laser dependent networks. Telesat in Canada, with its constellation of light speed, may be a microcosm of laser communication networks, developing satellite to satellite connections on similar and different orbits. Although the system has been plagued by financial difficulties, design changes and increased investment seem to be putting it back on track. SpaceX's Starlink satellite internet service has launched over 25 satellites, and last year it was confirmed that laser satellites were used to provide internet connectivity to several regions, even though it was only air to air. Low Earth orbit satellites have over 5000 systems and concepts, providing numerous proposals and contract requests for laser terminal manufacturers.

Source: Laser Net

Đề xuất liên quan
  • Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

    The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advanta...

    2024-06-22
    Xem bản dịch
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    Xem bản dịch
  • Bodor Laser has been approved by Shandong Engineering Research Center

    Recently, the Development and Reform Commission of Shandong Province announced the list of Shandong Engineering Research Centers for 2024. bodor Laser has been recognized as the "Advanced Laser High end Intelligent Manufacturing and Application Shandong Engineering Research Center" and is the only enterprise in the laser intelligent manufacturing industry to be listed.As an important component of ...

    2024-07-17
    Xem bản dịch
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    Xem bản dịch
  • Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

    Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sens...

    2024-05-08
    Xem bản dịch