Tiếng Việt

Laser Uranium Enrichment Company (GLE) accelerates development

206
2024-06-22 10:16:22
Xem bản dịch

Paducah, located in western Kentucky, may become the location of the world's first commercial facility to adopt this technology.
Since 2016, Global Laser Enrichment Company (GLE) has partnered with the US Department of Energy to use its unique molecular process to concentrate 200000 tons of depleted uranium "tails" stored at the former Padiuka gas diffusion plant in western Kentucky.

After years of research and testing, GLE has successfully pushed third-generation nuclear technology to the forefront of commercialization. This enterprise was originally jointly owned by General Electric and Hitachi, and now is 51% owned by Australian nuclear technology pioneer Silex, while Canadian nuclear fuel supplier Cameco holds the remaining 49%.

Recently, GLE signed an important agreement with the local government to obtain the option to acquire the land near the former PGDP (Padiuka Gas Diffusion Plant). This factory, which has been in use for national defense since 1952, began producing fuel grade uranium for nuclear reactors in 1964 and ceased operations in 2013.

At the same time, the Padiuka McCracken County Industrial Development Bureau has reached a transfer agreement for a piece of land located in Fulton County and Hickman County along the Mississippi River. Once GLE exercises its option, the land will be transferred to KFW.

Bruce Wilcox, President and CEO of Greater Paduah Economic Development, revealed that the option will expire in December 2024, but GLE expects its Test Loop pilot facility in Wilmington, North Carolina to complete a technical demonstration before that.

McLarken County Commissioner Eddie Jones, as the chairman of the Padiuka Community Reuse Organization, welcomes this and sees it as an "exciting development". He emphasized that Padiyuka's nuclear history may be key to its economic revival.

Regarding the core technology of GLE, Patrick White, the research director of the Nuclear Innovation Alliance, pointed out that the principle of laser uranium enrichment is to selectively excite uranium-235 molecules using lasers and separate them from uranium-238 molecules through physical methods. Compared to traditional gas diffusion or centrifuge technology, laser concentration has higher energy efficiency and smaller footprint.

However, some scientists and securities experts have expressed concerns about the global nuclear proliferation potential of Silex technology. In this regard, White believes that as long as appropriate control measures are implemented to ensure that technology is used responsibly, its existence "may not necessarily be a big problem".

Nima Ashkeboussi, Vice President of Government Relations and Communication at GLE, revealed in an interview that the construction cost of the facility is expected to exceed $1 billion. US President Biden approved a spending bill worth $2.7 billion in March this year to build an advanced nuclear fuel supply chain, and Ashkeboussi expects GLE to receive some funding support from it to achieve its ambitious goals.

Source: OFweek

Đề xuất liên quan
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    Xem bản dịch
  • Amazon's Kuiper Program Successfully Tested Satellite Space Laser

    SpaceX and its billionaire CEO Elon Musk may finally have reason to look back in the satellite internet competition. On Thursday, Amazon revealed that it had successfully used a space laser technology called "Optical Intersatellite Link" to transmit connections between two Kuiper Program satellites in low Earth orbit, located 621 miles apart, at a speed of 100 gigabits per second. This is approxim...

    2023-12-18
    Xem bản dịch
  • Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

    Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.In order to improve the performance of electronic devices used for global n...

    2024-04-01
    Xem bản dịch
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    Xem bản dịch
  • Medium-long wavelength infrared quantum cascade laser of MOCVD on silicon

    Us researchers report 8.1 μm wavelength quantum cascade laser (QCL) grown on silicon (Si) by MOCVD [S. Xu et al., Applications. Physics Letters, v123, p031110, 2023]. "There are no previous reports of QCL growth on silicon substrates by metal-organic chemical vapor deposition (MOCVD)," commented the team from the University of Wisconsin-Madison, the University of Illinois at Urbana-Champaign an...

    2023-08-04
    Xem bản dịch